HOME



picture info

Decussation Of The Superior Cerebellar Peduncle
In the human brain, the superior cerebellar peduncle (brachium conjunctivum) is one of the three paired cerebellar peduncles of bundled fibers that connect the cerebellum to the brainstem. The superior cerebellar peduncle connects to the midbrain. It consists mainly of efferent fibers, the cerebellothalamic tract that runs from a cerebellar hemisphere to the contralateral thalamus, and the cerebellorubral tract that runs from a cerebellar hemisphere to the red nucleus. It also contains afferent tracts, most prominent of which is the ventral spinocerebellar tract. Other afferent tracts are the ventral trigeminal tract, tectocerebellar fibers, and noradrenergic fibers from the locus coeruleus. The superior peduncle emerges from the upper and medial parts of the white matter of each cerebellar hemisphere and is placed under cover of the upper part of the cerebellum. Structure Superior cerebellar peduncles are connected together by the superior medullary velum, which can be follow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cerebellum
The cerebellum (: cerebella or cerebellums; Latin for 'little brain') is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as it or even larger. In humans, the cerebellum plays an important role in motor control and cognition, cognitive functions such as attention and language as well as emotion, emotional control such as regulating fear and pleasure responses, but its movement-related functions are the most solidly established. The human cerebellum does not initiate movement, but contributes to motor coordination, coordination, precision, and accurate timing: it receives input from sensory systems of the spinal cord and from other parts of the brain, and integrates these inputs to fine-tune motor activity. Cerebellar damage produces disorders in fine motor skill, fine movement, sense of balance, equilibrium, list of human positions, posture, and motor learning in humans. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Locus Coeruleus
The locus coeruleus () (LC), also spelled locus caeruleus or locus ceruleus, is a nucleus in the pons of the brainstem involved with physiological responses to stress and panic. It is a part of the reticular activating system in the reticular formation. The locus coeruleus, which in Latin means "blue spot", is the principal site for brain synthesis of norepinephrine (noradrenaline). The locus coeruleus and the areas of the body affected by the norepinephrine it produces are described collectively as the locus coeruleus-noradrenergic system or LC-NA system. Norepinephrine may also be released directly into the blood from the adrenal medulla. Anatomy The locus coeruleus (LC) is located in the posterior area of the rostral pons in the lateral floor of the fourth ventricle. It is composed of mostly medium-size neurons. Melanin granules inside the neurons contribute to its blue colour. Thus, it is also known as the ''blue nucleus'', or the ''nucleus pigmentosus pontis'' (hea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neuroscience Information Framework
The Neuroscience Information Framework is a repository of global neuroscience web resources, including experimental, clinical, and translational neuroscience databases, knowledge bases, atlases, and genetic/ genomic resources and provides many authoritative links throughout the neuroscience portal of Wikipedia. Description The Neuroscience Information Framework (NIF) is an initiative of the NIH Blueprint for Neuroscience Research, which was established in 2004 by the National Institutes of Health. Development of the NIF started in 2008, when the University of California, San Diego School of Medicine obtained an NIH contract to create and maintain "a dynamic inventory of web-based neurosciences data, resources, and tools that scientists and students can access via any computer connected to the Internet". The project is headed by Maryann Martone, co-director of the National Center for Microscopy and Imaging Research (NCMIR), part of the multi-disciplinary Center for Research in Bi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Friedrich Christian Gregor Wernekinck
Friedrich Christian Gregor Wernekinck (13 March 1798 – 23 March 1835) was a German anatomist. His specialties were anatomy and mineralogy. Wernekinck was born in Münster ( Bishopric of Münster, Holy Roman Empire) in 1798. After attending the University of Münster and University of Göttingen, he received his doctorate at the University of Giessen, where he became a full professor of philosophy in 1826. He died in 1835. He was the son of botanist Franz Wernekinck (1764–1839).ADB:Wernekink, Friedrich Christian Gregor
at


Associated eponym

*
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rubrospinal Tract
The rubrospinal tract is one of the descending tracts of the spinal cord. It is a motor control pathway that originates in the red nucleus. It is a part of the lateral indirect extrapyramidal tract. The rubrospinal tract fibers are efferent nerve fibers from the magnocellular part of the red nucleus. (Rubro-olivary fibers are efferents from the parvocelluar part of the red nucleus). It is functionally less important in humans. It is involved in motor control of distal flexors of the upper limbespecially of the hand and fingersby promoting flexor tone while inhibiting extensors. Structure The rubrospinal tract originates in the magnocellular red nucleus in the midbrain, and decussates (crosses over) at the midline in the anterior tegmental decussation. In the pons, it is situated medially within the rostral pontine tegmentum. In the medulla oblongata, it descends within the lateral tegmentum medial to the spinocerebellar tract, and posterior to the spinothalamic tract. It ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Contralateral
Standard anatomical terms of location are used to describe unambiguously the anatomy of humans and other animals. The terms, typically derived from Latin or Greek roots, describe something in its standard anatomical position. This position provides a definition of what is at the front ("anterior"), behind ("posterior") and so on. As part of defining and describing terms, the body is described through the use of anatomical planes and axes. The meaning of terms that are used can change depending on whether a vertebrate is a biped or a quadruped, due to the difference in the neuraxis, or if an invertebrate is a non-bilaterian. A non-bilaterian has no anterior or posterior surface for example but can still have a descriptor used such as proximal or distal in relation to a body part that is nearest to, or furthest from its middle. International organisations have determined vocabularies that are often used as standards for subdisciplines of anatomy. For example, '' Terminolog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Emboliform Nucleus
The emboliform nucleus is a deep cerebellar nucleus that lies immediately to the medial side of the dentate nucleus, partly covering its hilum. It is one of the four pairs of deep cerebellar nuclei, which are from lateral to medial: the dentate, emboliform, globose and fastigial. These nuclei can be seen using Weigert's elastic stain. In lower mammals the emboliform nucleus appears to be continuous with the globose nucleus, and these are known together as the interposed nucleus. ''Emboliform'', from Ancient Greek, means "shaped like a plug or wedge". Structure The emboliform nucleus is a wedge-shaped structure of gray matter found at the medial side of the hilum of the dentate nucleus. Its neurons display a similar structure from those of the dentate nucleus. In some mammals the emboliform nucleus is continuous with the globose nucleus, forming together the interposed nucleus. When present, the interposed nucleus can be divided in an anterior and a posterior inte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Globose Nucleus
The globose nucleus is one of the deep cerebellar nuclei. It is located medial to the emboliform nucleus, and lateral to the fastigial nucleus. The ''globose nucleus'' and emboliform nucleus are known collectively as the interposed nuclei. The globose nucleus is part of a neural circuit giving rise to descending motor tracts involved in motor control of distal musculature of the upper and lower limbs. Anatomy Afferents * Purkinje cells of (the paravermal cortex of) the spinocerebellum * Anterior spinocerebellar tract (via restiform body of inferior cerebellar peduncle) Efferents * Contralateral (magnocellular division of) red nucleus (via the superior cerebellar peduncle). This is the major major efferent projection of the globose nucleus. The red nucleus in turn gives rise to the rubrospinal tract. * Ipsilateral ventral lateral nucleus of thalamus. The VL nucleus in turn projects to the primary motor cortex and premotor cortex (which then give rise to the lateral c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dentatothalamic Tract
The dentatothalamic tract (or dentatorubrothalamic tract) is a tract which originates in the dentate nucleus, follows the ipsilateral superior cerebellar peduncle, decussates later on reaching the contralateral red nucleus and the contralateral thalamus. The term "dentatorubrothalamocortical" is sometimes used to emphasize termination in the cerebral cortex. Additional images File:Tractography_-_Dentatothalamic_tract_-_animation_3.gif, 3D data of the dentatothalamic tract. Reonctructed using tractography. See also * Cerebellothalamic tract * Red nucleus References External links * NIF Search - Dentatothalamic Tractvia the Neuroscience Information Framework The Neuroscience Information Framework is a repository of global neuroscience web resources, including experimental, clinical, and translational neuroscience databases, knowledge bases, atlases, and genetic/ genomic resources and provides many aut ... * https://web.archive.org/web/20091021004541/http://isc.temple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dentate Nucleus
The dentate nucleus refer to a pair of deep cerebellar nuclei deep within the white matter of the cerebellum of the brain with a dentate – tooth-like or serrated – edge. The dentate forms the largest pathway between the cerebellum and the remainder of the brain.Sultan, F., Hamodeh, S., & Baizer, J. S. (2010). THE HUMAN DENTATE NUCLEUS: A COMPLEX SHAPE UNTANGLED. rticle Neuroscience, 167(4), 965–968. It is the largest and most lateral of the four pairs of deep cerebellar nuclei, the others being the globose and emboliform nuclei, which together are referred to as the interposed nucleus, and the fastigial nucleus. The dentate nucleus is responsible for the planning, initiation and control of voluntary movements. The dorsal region of the dentate nucleus contains output channels involved in motor function, which is the movement of skeletal muscle, while the ventral region contains output channels involved in nonmotor function, such as conscious thought and visuospatial fun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourth Ventricle
The fourth ventricle is one of the four connected fluid-filled cavities within the human brain. These cavities, known collectively as the ventricular system, consist of the left and right lateral ventricles, the third ventricle, and the fourth ventricle. The fourth ventricle extends from the cerebral aqueduct (''aqueduct of Sylvius'') to the obex, and is filled with cerebrospinal fluid (CSF). The fourth ventricle has a characteristic diamond shape in cross-sections of the human brain. It is located within the pons or in the upper part of the medulla oblongata. CSF entering the fourth ventricle through the cerebral aqueduct can exit to the subarachnoid space of the spinal cord through two lateral apertures and a single, midline median aperture. Boundaries The fourth ventricle has a roof at its ''upper'' (posterior) surface and a floor at its ''lower'' (anterior) surface, and side walls formed by the cerebellar peduncles (nerve bundles joining the structure on the post ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]