HOME





Context-sensitive Grammar
A context-sensitive grammar (CSG) is a formal grammar in which the left-hand sides and right-hand sides of any Production (computer science), production rules may be surrounded by a context of terminal symbol, terminal and nonterminal symbols. Context-sensitive grammars are more general than context-free grammars, in the sense that there are languages that can be described by a CSG but not by a context-free grammar. Context-sensitive grammars are less general (in the same sense) than unrestricted grammars. Thus, CSGs are positioned between context-free and unrestricted grammars in the Chomsky hierarchy. A formal language that can be described by a context-sensitive grammar, or, equivalently, by a noncontracting grammar or a linear bounded automaton, is called a context-sensitive language. Some textbooks actually define CSGs as non-contracting, although this is not how Noam Chomsky defined them in 1959. This choice of definition makes no difference in terms of the languages generated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Grammar
A formal grammar is a set of Terminal and nonterminal symbols, symbols and the Production (computer science), production rules for rewriting some of them into every possible string of a formal language over an Alphabet (formal languages), alphabet. A grammar does not describe the semantics, meaning of the strings — only their form. In applied mathematics, formal language theory is the discipline that studies formal grammars and languages. Its applications are found in theoretical computer science, theoretical linguistics, Formal semantics (logic), formal semantics, mathematical logic, and other areas. A formal grammar is a Set_(mathematics), set of rules for rewriting strings, along with a "start symbol" from which rewriting starts. Therefore, a grammar is usually thought of as a language generator. However, it can also sometimes be used as the basis for a "recognizer"—a function in computing that determines whether a given string belongs to the language or is grammatical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mildly Context-sensitive Language
In computational linguistics, the term mildly context-sensitive grammar formalisms refers to several grammar formalisms that have been developed in an effort to provide adequate descriptions of the syntactic structure of natural language. Every mildly context-sensitive grammar formalism defines a class of mildly context-sensitive grammars (the grammars that can be specified in the formalism), and therefore also a class of mildly context-sensitive languages (the formal languages generated by the grammars). Background By 1985, several researchers in descriptive and mathematical linguistics had provided evidence against the hypothesis that the syntactic structure of natural language can be adequately described by context-free grammars.Riny Huybregts. "The Weak Inadequacy of Context-Free Phrase Structure Grammars". In Ger de Haan, Mieke Trommelen, and Wim Zonneveld, editors, ''Van periferie naar kern'', pages 81–99. Foris, Dordrecht, The Netherlands, 1984.Stuart M. Shieber.Evide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kuroda Normal Form
In formal language theory, a noncontracting grammar is in Kuroda normal form if all production rules are of the form: :''AB'' → ''CD'' or :''A'' → ''BC'' or :''A'' → ''B'' or :''A'' → ''a'' where A, B, C and D are nonterminal symbols and ''a'' is a terminal symbol. Some sources omit the ''A'' → ''B'' pattern. It is named after Sige-Yuki Kuroda, who originally called it a linear bounded grammar, a terminology that was also used by a few other authors thereafter. Every grammar in Kuroda normal form is noncontracting, and therefore, generates a context-sensitive language. Conversely, every noncontracting grammar that does not generate the empty string can be converted to Kuroda normal form. A straightforward technique attributed to György Révész transforms a grammar in Kuroda normal form to a context-sensitive grammar: ''AB'' → ''CD'' is replaced by four context-sensitive rules ''AB'' → ''AZ'', ''AZ'' → ''WZ'', ''WZ'' → ''WD'' and ''WD'' → ''CD''. This pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Backus–Naur Form
In computer science, Backus–Naur form (BNF, pronounced ), also known as Backus normal form, is a notation system for defining the Syntax (programming languages), syntax of Programming language, programming languages and other Formal language, formal languages, developed by John Backus and Peter Naur. It is a metasyntax for Context-free grammar, context-free grammars, providing a precise way to outline the rules of a language's structure. It has been widely used in official specifications, manuals, and textbooks on programming language theory, as well as to describe Document format, document formats, Instruction set, instruction sets, and Communication protocol, communication protocols. Over time, variations such as extended Backus–Naur form (EBNF) and augmented Backus–Naur form (ABNF) have emerged, building on the original framework with added features. Structure BNF specifications outline how symbols are combined to form syntactically valid sequences. Each BNF consists of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Revesz' Trick
In formal language theory, a noncontracting grammar is in Kuroda normal form if all production rules are of the form: :''AB'' → ''CD'' or :''A'' → ''BC'' or :''A'' → ''B'' or :''A'' → ''a'' where A, B, C and D are nonterminal symbols and ''a'' is a terminal symbol. Some sources omit the ''A'' → ''B'' pattern. It is named after Sige-Yuki Kuroda, who originally called it a linear bounded grammar, a terminology that was also used by a few other authors thereafter. Every grammar in Kuroda normal form is noncontracting, and therefore, generates a context-sensitive language. Conversely, every noncontracting grammar that does not generate the empty string can be converted to Kuroda normal form. A straightforward technique attributed to György Révész transforms a grammar in Kuroda normal form to a context-sensitive grammar: ''AB'' → ''CD'' is replaced by four context-sensitive rules ''AB'' → ''AZ'', ''AZ'' → ''WZ'', ''WZ'' → ''WD'' and ''WD'' → ''CD''. This prov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Context-free Language
In formal language theory, a context-free language (CFL), also called a Chomsky type-2 language, is a language generated by a context-free grammar (CFG). Context-free languages have many applications in programming languages, in particular, most arithmetic expressions are generated by context-free grammars. Background Context-free grammar Different context-free grammars can generate the same context-free language. Intrinsic properties of the language can be distinguished from extrinsic properties of a particular grammar by comparing multiple grammars that describe the language. Automata The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing. Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct. Examples An e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Information And Control
''Information and Computation'' is a closed-access computer science journal published by Elsevier (formerly Academic Press). The journal was founded in 1957 under its former name ''Information and Control'' and given its current title in 1987. , the current editor-in-chief is David Peleg. The journal publishes 12 issues a year. History ''Information and Computation'' was founded as ''Information and Control'' in 1957 at the initiative of Leon Brillouin and under the editorship of Leon Brillouin, Colin Cherry and Peter Elias. Murray Eden joined as editor in 1962 and became sole editor-in-chief in 1967. He was succeeded by Albert R. Meyer in 1981, under whose editorship the journal was rebranded ''Information and Computation'' in 1987 in response to the shifted focus of the journal towards theory of computation and away from control theory. In 2020, Albert Mayer was succeeded by David Peleg as editor-in-chief of the journal. Indexing All articles from the ''Information and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Penttonen Normal Form
In formal language theory, a noncontracting grammar is in Kuroda normal form if all production rules are of the form: :''AB'' → ''CD'' or :''A'' → ''BC'' or :''A'' → ''B'' or :''A'' → ''a'' where A, B, C and D are nonterminal symbols and ''a'' is a terminal symbol. Some sources omit the ''A'' → ''B'' pattern. It is named after Sige-Yuki Kuroda, who originally called it a linear bounded grammar, a terminology that was also used by a few other authors thereafter. Every grammar in Kuroda normal form is noncontracting, and therefore, generates a context-sensitive language. Conversely, every noncontracting grammar that does not generate the empty string can be converted to Kuroda normal form. A straightforward technique attributed to György Révész transforms a grammar in Kuroda normal form to a context-sensitive grammar: ''AB'' → ''CD'' is replaced by four context-sensitive rules ''AB'' → ''AZ'', ''AZ'' → ''WZ'', ''WZ'' → ''WD'' and ''WD'' → ''CD''. This prov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Terminal Symbol
In formal languages, terminal and nonterminal symbols are parts of the ''vocabulary'' under a formal grammar. ''Vocabulary'' is a finite, nonempty set of symbols. ''Terminal symbols'' are symbols that cannot be replaced by other symbols of the vocabulary. ''Nonterminal symbols'' are symbols that can be replaced by other symbols of the vocabulary by the production rules under the same formal grammar. A formal grammar defines a formal language over the vocabulary of the grammar. In the context of formal language, the term ''vocabulary'' is more commonly known as ''alphabet''. Nonterminal symbols are also called ''syntactic variables''. Terminal symbols Terminal symbols are those symbols that can appear in the formal language defined by a formal grammar. The process of applying the production rules successively to a start symbol might not terminate, but if it terminates when there is no more production rule can be applied, the output string will consist only of terminal symb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Empty String
In formal language theory, the empty string, or empty word, is the unique String (computer science), string of length zero. Formal theory Formally, a string is a finite, ordered sequence of character (symbol), characters such as letters, digits or spaces. The empty string is the special case where the sequence has length zero, so there are no symbols in the string. There is only one empty string, because two strings are only different if they have different lengths or a different sequence of symbols. In formal treatments, the empty string is denoted with ε or sometimes Λ or λ. The empty string should not be confused with the empty language ∅, which is a formal language (i.e. a set of strings) that contains no strings, not even the empty string. The empty string has several properties: * , ε, = 0. Its string (computer science)#Formal theory, string length is zero. * ε ⋅ s = s ⋅ ε = s. The empty string is the identity element of the concatenation operation. The set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reflexive Transitive Closure
In mathematics, a subset of a given set is closed under an operation on the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: is not a natural number, although both 1 and 2 are. Similarly, a subset is said to be closed under a ''collection'' of operations if it is closed under each of the operations individually. The closure of a subset is the result of a closure operator applied to the subset. The ''closure'' of a subset under some operations is the smallest superset that is closed under these operations. It is often called the ''span'' (for example linear span) or the ''generated set''. Definitions Let be a set equipped with one or several methods for producing elements of from other elements of . Operations and (partial) multivariate function are examples of such methods. If is a topological space, the limit of a sequence of eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]