Constructible Topology
In commutative algebra, the constructible topology on the spectrum \operatorname(A) of a commutative ring A is a topology where each closed set is the image of \operatorname (B) in \operatorname(A) for some algebra ''B'' over ''A''. An important feature of this construction is that the map \operatorname(B) \to \operatorname(A) is a closed map with respect to the constructible topology. With respect to this topology, \operatorname(A) is a compact, Hausdorff, and totally disconnected topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ... (i.e., a Stone space). In general, the constructible topology is a finer topology than the Zariski topology, and the two topologies coincide if and only if A / \operatorname(A) is a von Neumann regular ring, where \operatorname(A) is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and p-adic number, ''p''-adic integers. Commutative algebra is the main technical tool of algebraic geometry, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. Several concepts of commutative algebras have been developed in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Totally Disconnected Space
In topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) are connected; in a totally disconnected space, these are the ''only'' connected subsets. An important example of a totally disconnected space is the Cantor set, which is homeomorphic to the set of ''p''-adic integers. Another example, playing a key role in algebraic number theory, is the field of ''p''-adic numbers. Definition A topological space X is totally disconnected if the connected components in X are the one-point sets. Analogously, a topological space X is totally path-disconnected if all path-components in X are the one-point sets. Another closely related notion is that of a totally separated space, i.e. a space where quasicomponents are singletons. That is, a topological space X is totally separated if for every x\i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constructible Set (topology)
In topology, constructible sets are a class of subsets of a topological space that have a relatively "simple" structure. They are used particularly in algebraic geometry and related fields. A key result known as ''Chevalley's theorem'' in algebraic geometry shows that the image of a constructible set is constructible for an important class of map (mathematics), mappings (more specifically morphism of schemes, morphisms) of algebraic varieties (or more generally scheme (mathematics), schemes). In addition, a large number of "local" geometric properties of schemes, morphisms and sheaves are (locally) constructible. Constructible sets also feature in the definition of various types of constructible sheaf, constructible sheaves in algebraic geometry and intersection cohomology. Definitions A simple definition, adequate in many situations, is that a constructible set is a finite union (set theory), union of locally closed sets. (A set is locally closed if it is the intersection (set the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nilradical Of A Ring
In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements: :\mathfrak_R = \lbrace f \in R \mid f^m=0 \text m\in\mathbb_\rbrace. It is thus the radical of the zero ideal. If the nilradical is the zero ideal, the ring is called a reduced ring. The nilradical of a commutative ring is the intersection of all prime ideals. In the non-commutative ring case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways; see the article Radical of a ring for more on this. The nilradical of a Lie algebra is similarly defined for Lie algebras. Commutative rings The nilradical of a commutative ring is the set of all nilpotent elements in the ring, or equivalently the radical of the zero ideal. This is an ideal because the sum of any two nilpotent elements is nilpotent (by the binomial formula), and the product of any element with a nilpotent element is nilpotent (by commu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Von Neumann Regular Ring
In mathematics, a von Neumann regular ring is a ring ''R'' (associative, with 1, not necessarily commutative) such that for every element ''a'' in ''R'' there exists an ''x'' in ''R'' with . One may think of ''x'' as a "weak inverse" of the element ''a''; in general ''x'' is not uniquely determined by ''a''. Von Neumann regular rings are also called absolutely flat rings, because these rings are characterized by the fact that every left ''R''-module is flat. Von Neumann regular rings were introduced by under the name of "regular rings", in the course of his study of von Neumann algebras and continuous geometry. Von Neumann regular rings should not be confused with the unrelated regular rings and regular local rings of commutative algebra. An element ''a'' of a ring is called a von Neumann regular element if there exists an ''x'' such that . An ideal \mathfrak is called a (von Neumann) regular ideal if for every element ''a'' in \mathfrak there exists an element ''x'' in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zariski Topology
In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring (called the spectrum of the ring) a topological space. The Zariski topology allows tools from topology to be used to study algebraic varieties, even when the underlying field is not a topological field. This is one of the basic ideas of scheme theory, which allows one to build general algebraic varieties by gluing together affine varieties in a way similar to that in manifold theory, where manifolds are built by gluing together charts, which are open subsets of real affine spaces. The Zariski topology of an algebraic variety is the topology whose closed sets are the algebraic subsets of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finer Topology
In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies. Definition A topology on a set may be defined as the collection of subsets which are considered to be "open". (An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the complement of an open set is closed and vice versa. In the following, it doesn't matter which definition is used.) For definiteness the reader should think of a topology as the family of open sets of a topological space, since that is the standard meaning of the word "topology". Let ''τ''1 and ''τ''2 be two topologies on a set ''X'' such that ''τ''1 is contained in ''τ''2: :\tau_1 \subseteq \tau_2. That is, every element of ''τ''1 is also an element of ''τ''2. Then the topology ''τ''1 is said to be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stone Space
In topology and related areas of mathematics, a Stone space, also known as a profinite space or profinite set, is a compact Hausdorff totally disconnected space. Stone spaces are named after Marshall Harvey Stone who introduced and studied them in the 1930s in the course of his investigation of Boolean algebras, which culminated in his representation theorem for Boolean algebras. Equivalent conditions The following conditions on the topological space X are equivalent: * X is a Stone space; * X is homeomorphic to the projective limit (in the category of topological spaces) of an inverse system of finite discrete spaces; * X is compact and totally separated; * X is compact, T0, and zero-dimensional (in the sense of the small inductive dimension); * X is coherent and Hausdorff. Examples Important examples of Stone spaces include finite discrete spaces, the Cantor set and the space \Z_p of p-adic integers, where p is any prime number. Generalizing these examples, any p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom (after T0 and T1), which is why Hausdorff ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spectrum Of A Ring
In commutative algebra, the prime spectrum (or simply the spectrum) of a commutative ring R is the set of all prime ideals of R, and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with a sheaf of rings. Zariski topology For any ideal I of R, define V_I to be the set of prime ideals containing I. We can put a topology on \operatorname(R) by defining the collection of closed sets to be :\big\. This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows: For f\in R, define D_f to be the set of prime ideals of R not containing f. Then each D_f is an open subset of \operatorname(R), and \big\ is a basis for the Zariski topology. \operatorname(R) is a compact space, but almost never Hausdorff: In fact, the maximal ideals in R are precisely the closed points in this topology. By the same reasoning, \operatorname(R) is not, in general, a T1 space. However, \operatorna ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Set
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One su ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |