Conjunction Elimination
In propositional logic, conjunction elimination (also called ''and'' elimination, ∧ elimination, or simplification)Hurley is a valid immediate inference, argument form and rule of inference which makes the inference that, if the conjunction ''A and B'' is true, then ''A'' is true, and ''B'' is true. The rule makes it possible to shorten longer proofs by deriving one of the conjuncts of a conjunction on a line by itself. An example in English: :It's raining and it's pouring. :Therefore it's raining. The rule consists of two separate sub-rules, which can be expressed in formal language as: :\frac and :\frac The two sub-rules together mean that, whenever an instance of "P \land Q" appears on a line of a proof, either "P" or "Q" can be placed on a subsequent line by itself. The above example in English is an application of the first sub-rule. Formal notation The ''conjunction elimination'' sub-rules may be written in sequent notation: : (P \land Q) \vdash P and : (P ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rule Of Inference
Rules of inference are ways of deriving conclusions from premises. They are integral parts of formal logic, serving as norms of the Logical form, logical structure of Validity (logic), valid arguments. If an argument with true premises follows a rule of inference then the conclusion cannot be false. ''Modus ponens'', an influential rule of inference, connects two premises of the form "if P then Q" and "P" to the conclusion "Q", as in the argument "If it rains, then the ground is wet. It rains. Therefore, the ground is wet." There are many other rules of inference for different patterns of valid arguments, such as ''modus tollens'', disjunctive syllogism, constructive dilemma, and existential generalization. Rules of inference include rules of implication, which operate only in one direction from premises to conclusions, and rules of replacement, which state that two expressions are equivalent and can be freely swapped. Rules of inference contrast with formal fallaciesinvalid argu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formal Language
In logic, mathematics, computer science, and linguistics, a formal language is a set of strings whose symbols are taken from a set called "alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also called "words"). Words that belong to a particular formal language are sometimes called ''well-formed words''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar. In computer science, formal languages are used, among others, as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages, in which the words of the language represent concepts that are associated with meanings or semantics. In computational complexity theory, decision problems are typically defined as formal languages, and complexity classes are defined as the sets of the formal languages that can be parsed by machines with limited computational power. In ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rules Of Inference
Rules of inference are ways of deriving conclusions from premises. They are integral parts of formal logic, serving as norms of the logical structure of valid arguments. If an argument with true premises follows a rule of inference then the conclusion cannot be false. ''Modus ponens'', an influential rule of inference, connects two premises of the form "if P then Q" and "P" to the conclusion "Q", as in the argument "If it rains, then the ground is wet. It rains. Therefore, the ground is wet." There are many other rules of inference for different patterns of valid arguments, such as '' modus tollens'', disjunctive syllogism, constructive dilemma, and existential generalization. Rules of inference include rules of implication, which operate only in one direction from premises to conclusions, and rules of replacement, which state that two expressions are equivalent and can be freely swapped. Rules of inference contrast with formal fallaciesinvalid argument forms involving lo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theorems
In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formal system ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tautology (logic)
In mathematical logic, a tautology (from ) is a formula that is true regardless of the interpretation of its component terms, with only the logical constants having a fixed meaning. For example, a formula that states, "the ball is green or the ball is not green," is always true, regardless of what a ball is and regardless of its colour. Tautology is usually, though not always, used to refer to valid formulas of propositional logic. The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement. In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false. Unsatisfiable statements, both through negation and affirmation, are known formally as contradictions. A formula that is neither a tautology nor a contradiction is said to be logically c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formal System
A formal system is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms. In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in mathematics. The term ''formalism'' is sometimes a rough synonym for ''formal system'', but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation. Concepts A formal system has the following: * Formal language, which is a set of well-formed formulas, which are strings of symbols from an alphabet, formed by a formal grammar (consisting of production rules or formation rules). * Deductive system, deductive apparatus, or proof system, which has rules of inference that take axioms and infers theorems, both of which are part of the formal language. A formal system is said to be recursive (i.e. effective) or recursively enumerable if the set of axioms and the set of inference rules are decidable ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Consequence
Logical consequence (also entailment or logical implication) is a fundamental concept in logic which describes the relationship between statement (logic), statements that hold true when one statement logically ''follows from'' one or more statements. A Validity (logic), valid logical argument is one in which the Consequent, conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is logical truth, necessary and Formalism (philosophy of mathematics), formal, by wa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metalogic
Metalogic is the metatheory of logic. Whereas ''logic'' studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems. Logic concerns the truths that may be derived using a logical system; metalogic concerns the truths that may be derived ''about'' the languages and systems that are used to express truths. The basic objects of metalogical study are formal languages, formal systems, and their interpretations. The study of interpretation of formal systems is the branch of mathematical logic that is known as model theory, and the study of deductive systems is the branch that is known as proof theory. Overview Formal language A ''formal language'' is an organized set of symbols, the symbols of which precisely define it by shape and place. Such a language therefore can be defined without reference to the meanings of its expressions; it can exist before any interpretation is assigned to it—that is, befo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sequent
In mathematical logic, a sequent is a very general kind of conditional assertion. : A_1,\,\dots,A_m \,\vdash\, B_1,\,\dots,B_n. A sequent may have any number ''m'' of condition formulas ''Ai'' (called " antecedents") and any number ''n'' of asserted formulas ''Bj'' (called "succedents" or " consequents"). A sequent is understood to mean that if all of the antecedent conditions are true, then at least one of the consequent formulas is true. This style of conditional assertion is almost always associated with the conceptual framework of sequent calculus. Introduction The form and semantics of sequents Sequents are best understood in the context of the following three kinds of logical judgments: Unconditional assertion. No antecedent formulas. * Example: ⊢ ''B'' * Meaning: ''B'' is true. Conditional assertion. Any number of antecedent formulas. Simple conditional assertion. Single consequent formula. * Example: ''A1'', ''A2'', ''A3'' ⊢ ''B'' * Meaning: IF ''A1'' AND ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
English Language
English is a West Germanic language that developed in early medieval England and has since become a English as a lingua franca, global lingua franca. The namesake of the language is the Angles (tribe), Angles, one of the Germanic peoples that Anglo-Saxon settlement of Britain, migrated to Britain after its End of Roman rule in Britain, Roman occupiers left. English is the list of languages by total number of speakers, most spoken language in the world, primarily due to the global influences of the former British Empire (succeeded by the Commonwealth of Nations) and the United States. English is the list of languages by number of native speakers, third-most spoken native language, after Mandarin Chinese and Spanish language, Spanish; it is also the most widely learned second language in the world, with more second-language speakers than native speakers. English is either the official language or one of the official languages in list of countries and territories where English ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Propositional Calculus
The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called ''first-order'' propositional logic to contrast it with System F, but it should not be confused with first-order logic. It deals with propositions (which can be Truth value, true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of Logical conjunction, conjunction, Logical disjunction, disjunction, Material conditional, implication, Logical biconditional, biconditional, and negation. Some sources include other connectives, as in the table below. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or Quantifier (logic), quantifiers. However, all the machinery of pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formal Proof
In logic and mathematics, a formal proof or derivation is a finite sequence of sentences (known as well-formed formulas when relating to formal language), each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence, according to the rule of inference. It differs from a natural language argument in that it is rigorous, unambiguous and mechanically verifiable. If the set of assumptions is empty, then the last sentence in a formal proof is called a theorem of the formal system. The notion of theorem is generally effective, but there may be no method by which we can reliably find proof of a given sentence or determine that none exists. The concepts of Fitch-style proof, sequent calculus and natural deduction are generalizations of the concept of proof. The theorem is a syntactic consequence of all the well-formed formulas preceding it in the proof. For a well-formed formula to qualify as part of a proof, it must be the result of applying a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |