Classical Lie Algebra
The classical Lie algebras are finite-dimensional Lie algebras over a field which can be classified into four types A_n , B_n , C_n and D_n , where for \mathfrak(n) the general linear Lie algebra and I_n the n \times n identity matrix: * A_n := \mathfrak(n+1) = \ , the ''special linear Lie algebra''; * B_n := \mathfrak(2n+1) = \ , the ''odd orthogonal Lie algebra''; * C_n := \mathfrak(2n) = \ , the ''symplectic Lie algebra''; and * D_n := \mathfrak(2n) = \ , the ''even orthogonal Lie algebra''. Except for the low-dimensional cases D_1 = \mathfrak(2) and D_2 = \mathfrak(4) , the classical Lie algebras are simple. The Moyal algebra is an infinite-dimensional Lie algebra that contains all classical Lie algebras as subalgebras. See also * Simple Lie algebra * Classical group In mathematics, the classical groups are defined as the special linear groups over the reals \mathbb, the complex numbers \mathbb and the quaternions \mathbb together with special automo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation (called the Lie bracket) is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, ,y= xy - yx . Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: every Lie group gives rise to a Lie algebra, which is the tangent space at the identity. (In this case, the Lie bracket measures the failure of commutativity for the Lie group.) Conversely, to any finite-di ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
General Linear Group
In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group. The group is so named because the columns (and also the rows) of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position. To be more precise, it is necessary to specify what kind of objects may appear in the entries of the matrix. For example, the general linear group over \R (the set of real numbers) is the group of n\times n invertible matrices of real numbers, and is denoted by \operatorname_n(\R) or \operatorname(n,\R). More generally ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Identity Matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or can be trivially determined by the context. I_1 = \begin 1 \end ,\ I_2 = \begin 1 & 0 \\ 0 & 1 \end ,\ I_3 = \begin 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end ,\ \dots ,\ I_n = \begin 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end. The term unit matrix has also been widely used, but the term ''identity matrix'' is now standard. The term ''unit matrix'' is ambiguous, because it is also used for a matrix of on ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Simple Lie Algebra
In algebra, a simple Lie algebra is a Lie algebra that is non-abelian and contains no nonzero proper ideals. The classification of real simple Lie algebras is one of the major achievements of Wilhelm Killing and Élie Cartan. A direct sum of simple Lie algebras is called a semisimple Lie algebra. A simple Lie group is a connected Lie group whose Lie algebra is simple. Complex simple Lie algebras A finite-dimensional simple complex Lie algebra is isomorphic to either of the following: \mathfrak_n \mathbb, \mathfrak_n \mathbb, \mathfrak_ \mathbb ( classical Lie algebras) or one of the five exceptional Lie algebras. To each finite-dimensional complex semisimple Lie algebra In mathematics, a Lie algebra is semisimple if it is a direct sum of modules, direct sum of Simple Lie algebra, simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper Lie algebra#Subalgebras.2C ideals ... \mathfrak, there exists a corresponding diagram ( ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Moyal Bracket
In physics, the Moyal bracket is the suitably normalized antisymmetrization of the phase-space star product. The Moyal bracket was developed in about 1940 by José Enrique Moyal, but Moyal only succeeded in publishing his work in 1949 after a lengthy dispute with Paul Dirac. In the meantime this idea was independently introduced in 1946 by Hip Groenewold. Overview The Moyal bracket is a way of describing the commutator of observables in the phase space formulation of quantum mechanics when these observables are described as functions on phase space. It relies on schemes for identifying functions on phase space with quantum observables, the most famous of these schemes being the Wigner–Weyl transform. It underlies Moyal’s dynamical equation, an equivalent formulation of Heisenberg’s quantum equation of motion, thereby providing the quantum generalization of Hamilton’s equations. Mathematically, it is a deformation of the phase-space Poisson bracket (essential ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Classical Group
In mathematics, the classical groups are defined as the special linear groups over the reals \mathbb, the complex numbers \mathbb and the quaternions \mathbb together with special automorphism groups of Bilinear form#Symmetric, skew-symmetric and alternating forms, symmetric or Bilinear form#Symmetric, skew-symmetric and alternating forms, skew-symmetric bilinear forms and Sesquilinear form#Hermitian form, Hermitian or Sesquilinear form#Skew-Hermitian form, skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the Simple_Lie_group#Exceptional_cases, exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Her ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |