HOME





Chronons
A chronon is a proposed quantum of time, that is, a discrete and indivisible "unit" of time as part of a hypothesis that proposes that time is not continuous. In simple language, a chronon is the smallest, discrete, non-decomposable unit of time. In a one-dimensional model, a chronon is a ''time interval'' or ''period'', while in an ''n''-dimensional model it is a non-decomposable region in ''n''-dimensional time. It is not easy to see how it could possibly be recast so as to postulate only a discrete spacetime (or even a merely dense one). For a set of instants to be dense, every instant not in the set must have a sequence of instants in the set that converge (get arbitrarily close) to it. For it to be a continuum, however, something more is required— that every set of instants earlier (later) than any given one should have a tight upper (lower) bound that is also an instant (see least upper bound property). It is continuity that enables modern mathematics to surmount the para ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum
In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum. For example, a photon is a single quantum of light of a specific frequency (or of any other form of electromagnetic radiation). Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. Atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom. Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact (quantum electrodynamics) is part of the fundamental framework for understanding and describing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chen Ning Yang
Yang Chen-Ning or Chen-Ning Yang (; born 1 October 1922), also known as C. N. Yang or by the English name Frank Yang, is a Chinese theoretical physicist who made significant contributions to statistical mechanics, integrable systems, gauge theory, and both particle physics and condensed matter physics. He and Tsung-Dao Lee received the 1957 Nobel Prize in Physics for their work on parity non-conservation of weak interaction. The two proposed that the conservation of parity, a physical law observed to hold in all other physical processes, is violated in the so-called weak nuclear reactions, those nuclear processes that result in the emission of beta or alpha particles. Yang is also well known for his collaboration with Robert Mills in developing non-abelian gauge theory, widely known as the Yang–Mills theory. Early life and education Yang was born in Hefei, Anhui, China. His father, (; 1896–1973), was a mathematician, and his mother, Meng Hwa Loh Yang (), was a house ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combinations of protons and neutrons is called nuclear physics. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three Generation (particle physics), generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of Up quark, up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quark, Quarks cannot exist on their own but form hadrons. Hadrons that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Particles
This is a list of known and hypothesized microscopic particles in particle physics, condensed matter physics and cosmology. Standard Model elementary particles Elementary particles are particles with no measurable internal structure; that is, it is unknown whether they are composed of other particles. They are the fundamental objects of quantum field theory. Many families and sub-families of elementary particles exist. Elementary particles are classified according to their Spin (physics), spin. Fermions have half-integer spin while bosons have integer spin. All the elementary particles of the Standard Model have been experimentally observed, including the Higgs boson in 2012. Many other hypothetical elementary particles, such as the graviton, have been proposed, but not observed experimentally. Fermions Fermions are one of the two fundamental classes of particles, the other being bosons. Fermion particles are described by Fermi–Dirac statistics and have quantum numbers de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tachyon
A tachyon () or tachyonic particle is a hypothetical particle that always travels Faster-than-light, faster than light. Physicists posit that faster-than-light particles cannot exist because they are inconsistent with the known Scientific law#Laws of physics, laws of physics. If such particles did exist they perhaps could be used to send signals faster than light and into the past. According to the theory of relativity this would violate Causality (physics), causality, leading to logical paradoxes such as the grandfather paradox. Tachyons would exhibit the unusual property of increasing in speed as their energy decreases, and would require infinite energy to slow to the speed of light. No verifiable experimental evidence for the existence of such particles has been found. In the 1967 paper that coined the term, Gerald Feinberg proposed that tachyonic particles could be made from excitations of a Quantum field theory, quantum field with imaginary mass. However, it was soon realiz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravastar
In astrophysics, a gravastar (a blend word of "gravitational vacuum star") is an object hypothesized in a 2001 paper by Pawel O. Mazur and Emil Mottola as an alternative to the black hole theory. It has the usual black hole metric outside of the horizon, but de Sitter metric inside. On the horizon there is a thin shell of exotic matter. This solution to the Einstein equations is stable and has no singularities. Further theoretical considerations of gravastars include the notion of a nestar (a second gravastar ''nested'' within the first one). Structure In the original formulation by Mazur and Mottola, a gravastar is composed of three regions, differentiated by the relationship between pressure and energy density . The central region consists of false vacuum or "dark energy", and in this region . Surrounding it is a thin shell of perfect fluid where . On the exterior is true vacuum, where . The dark-energy-like behavior of the inner region prevents collapse to a si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elementary Particle
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number: electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles. Ordinary matter is composed of atoms, themselves once thought to be indivisible elementary particles. The name ''atom'' comes from the Ancient Greek word ''ἄτομος'' ( atomos) which means ''indivisible'' or ''uncuttable''. Despite the theories about atoms that had existed for thousands of years, the factual existence of ato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Decoherence
Quantum decoherence is the loss of quantum coherence. It involves generally a loss of information of a system to its environment. Quantum decoherence has been studied to understand how quantum systems convert to systems that can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have confirmed some of the key issues. Quantum computing relies on quantum coherence and is one of the primary practical applications of the concept. Concept In quantum mechanics, physical systems are described by a mathematical representation called a quantum state. Probabilities for the outcomes of experiments upon a system are calculated by applying the Born rule to the quantum state describing that system. Quantum states are either ''pure'' or ''mixed''; pure states are also known as ''wavefunctions''. Assigning a pure state to a quantum system implies certai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Dirac
Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for both quantum electrodynamics and quantum field theory. He was the Lucasian Professor of Mathematics at the University of Cambridge and a professor of physics at Florida State University. Dirac shared the 1933 Nobel Prize in Physics with Erwin Schrödinger for "the discovery of new productive forms of atomic theory". Dirac graduated from the University of Bristol with a first class honours Bachelor of Science degree in electrical engineering in 1921, and a first class honours Bachelor of Arts degree in mathematics in 1923. Dirac then graduated from the University of Cambridge with a PhD in physics in 1926, writing the first ever thesis on quantum mechanics. Dirac made fundamental contributions to the early development of both quantum mechanic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hendrik Lorentz
Hendrik Antoon Lorentz ( ; ; 18 July 1853 – 4 February 1928) was a Dutch theoretical physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for their discovery and theoretical explanation of the Zeeman effect. He derived the Lorentz transformation of the special theory of relativity, as well as the Lorentz force, which describes the combined electric and magnetic forces acting on a charged particle in an electromagnetic field. Lorentz was also responsible for the Lorentz oscillator model, a classical model used to describe the anomalous dispersion observed in dielectric materials when the driving frequency of the electric field was near the resonant frequency of the material, resulting in abnormal refractive indices. According to the biography published by the Nobel Foundation, "It may well be said that Lorentz was regarded by all theoretical physicists as the world's leading spirit, who completed what was left unfinished by his predecessors and prepar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

World Line
The world line (or worldline) of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept of modern physics, and particularly theoretical physics. The concept of a "world line" is distinguished from concepts such as an "orbit" or a " trajectory" (e.g., a planet's ''orbit in space'' or the ''trajectory'' of a car on a road) by inclusion of the dimension ''time'', and typically encompasses a large area of spacetime wherein paths which are straight perceptually are rendered as curves in spacetime to show their (relatively) more absolute position states—to reveal the nature of special relativity or gravitational interactions. The idea of world lines was originated by physicists and was pioneered by Hermann Minkowski. The term is now used most often in the context of relativity theories (i.e., special relativity and general relativity). Usage in physics A world line of an object (generally approximated as a point in space, e.g., a p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planck Time
In particle physics and physical cosmology, Planck units are a system of units of measurement defined exclusively in terms of four universal physical constants: '' c'', '' G'', '' ħ'', and ''k''B (described further below). Expressing one of these physical constants in terms of Planck units yields a numerical value of 1. They are a system of natural units, defined using fundamental properties of nature (specifically, properties of free space) rather than properties of a chosen prototype object. Originally proposed in 1899 by German physicist Max Planck, they are relevant in research on unified theories such as quantum gravity. The term Planck scale refers to quantities of space, time, energy and other units that are similar in magnitude to corresponding Planck units. This region may be characterized by particle energies of around or , time intervals of around and lengths of around (approximately the energy-equivalent of the Planck mass, the Planck time and the Planck len ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]