Character Module
In mathematics, especially in the area of abstract algebra, every module has an associated character module. Using the associated character module it is possible to investigate the properties of the original module. One of the main results discovered by Joachim Lambek shows that a module is flat if and only if the associated character module is injective. Definition The group (\mathbb/\mathbb, +), the group of rational numbers modulo 1, can be considered as a \mathbb-module in the natural way. Let M be an additive group which is also considered as a \mathbb-module. Then the group M^* = \operatorname_\mathbb (M, \mathbb / \mathbb) of \mathbb-homomorphisms from M to \mathbb / \mathbb is called the ''character group associated to M''. The elements in this group are called ''characters''. If M is a left R-module over a ring R, then the character group M^* is a right R-module and called the ''character module associated to'' M. The module action in the character module for f \in \opera ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the '' variety of groups''. History Before the nineteenth century, alge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Joachim Lambek
Joachim "Jim" Lambek (5 December 1922 – 23 June 2014) was a German-born Canadian mathematician. He was Peter Redpath Emeritus Professor of Pure Mathematics at McGill University, where he earned his PhD degree in 1950 with Hans Zassenhaus as advisor. Biography Lambek was born in Leipzig, Germany, where he attended a Gymnasium. He came to England in 1938 as a refugee on the ''Kindertransport''. From there he was interned as an enemy alien and deported to a prison work camp in New Brunswick, Canada. There, he began in his spare time a mathematical apprenticeship with Fritz Rothberger, also interned, and wrote the McGill Junior Matriculation in fall of 1941. In the spring of 1942, he was released and settled in Montreal, where he entered studies at McGill University, graduating with an honours mathematics degree in 1945 and an MSc a year later. In 1950, he completed his doctorate under Hans Zassenhaus becoming McGill's first PhD in mathematics. Lambek became assistant profes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flat Module
In algebra, a flat module over a ring ''R'' is an ''R''- module ''M'' such that taking the tensor product over ''R'' with ''M'' preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact. Flatness was introduced by in his paper ''Géometrie Algébrique et Géométrie Analytique''. See also flat morphism. Definition A module over a ring is ''flat'' if the following condition is satisfied: for every injective linear map \varphi: K \to L of -modules, the map :\varphi \otimes_R M: K \otimes_R M \to L \otimes_R M is also injective, where \varphi \otimes_R M is the map induced by k \otimes m \mapsto \varphi(k) \otimes m. For this definition, it is enough to restrict the injections \varphi to the inclusions of finitely generated ideals into . Equivalently, an -module is flat if the tensor product with is an exact functor; that is if, for every short exact sequence of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Injective Module
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module ''Q'' that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if ''Q'' is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module ''Y'', then any module homomorphism from this submodule to ''Q'' can be extended to a homomorphism from all of ''Y'' to ''Q''. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook . Injective modules have been heavily studied, and a variety of additional notions are defined in terms of them: Injective cogenerators are injective modules that faithfully represent the entire category of modules. Injective resolutions measure how far from injective a module is in terms of the injective dimension and represent modules in the derived category. Inj ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canadian Mathematical Bulletin
The ''Canadian Mathematical Bulletin'' (french: Bulletin Canadien de Mathématiques) is a mathematics journal, established in 1958 and published quarterly by the Canadian Mathematical Society. The current editors-in-chief of the journal are Antonio Lei and Javad Mashreghi. The journal publishes short articles in all areas of mathematics that are of sufficient interest to the general mathematical public. Abstracting and indexing The journal is abstracted in: for the Canadian Mathematical Bulletin. * '''' * '' [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group (mathematics)
In mathematics, a group is a set and an operation that combines any two elements of the set to produce a third element of the set, in such a way that the operation is associative, an identity element exists and every element has an inverse. These three axioms hold for number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the ob ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Module Homomorphism
In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if ''M'' and ''N'' are left modules over a ring ''R'', then a function f: M \to N is called an ''R''-''module homomorphism'' or an ''R''-''linear map'' if for any ''x'', ''y'' in ''M'' and ''r'' in ''R'', :f(x + y) = f(x) + f(y), :f(rx) = rf(x). In other words, ''f'' is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If ''M'', ''N'' are right ''R''-modules, then the second condition is replaced with :f(xr) = f(x)r. The preimage of the zero element under ''f'' is called the kernel of ''f''. The set of all module homomorphisms from ''M'' to ''N'' is denoted by \operatorname_R(M, N). It is an abelian group (under pointwise addition) but is not necessarily a module unless ''R'' is commutative. The composition of module homomorphisms is again a module homomorphism, and the identity map on a module is a module homomorphi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functor
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a linguistic context; see function word. Definition Let ''C'' and ''D'' be categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D'', * associates each morphism f \colon X \to Y in ''C'' to a morphism F(f) \colon F(X) \to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Modules
In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ring of integers Z, it is the same thing as the category of abelian groups. The category of right modules is defined in a similar way. Note: Some authors use the term module category for the category of modules. This term can be ambiguous since it could also refer to a category with a monoidal-category action. Properties The categories of left and right modules are abelian categories. These categories have enough projectives and enough injectives. Mitchell's embedding theorem states every abelian category arises as a full subcategory of the category of modules. Projective limits and inductive limits exist in the categories of left and right modules. Over a commutative ring, together with the tensor product of modules ⊗, the c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisible Group
In mathematics, especially in the field of group theory, a divisible group is an abelian group in which every element can, in some sense, be divided by positive integers, or more accurately, every element is an ''n''th multiple for each positive integer ''n''. Divisible groups are important in understanding the structure of abelian groups, especially because they are the injective abelian groups. Definition An abelian group (G, +) is divisible if, for every positive integer n and every g \in G, there exists y \in G such that ny=g. An equivalent condition is: for any positive integer n, nG=G, since the existence of y for every n and g implies that n G\supseteq G, and the other direction n G\subseteq G is true for every group. A third equivalent condition is that an abelian group G is divisible if and only if G is an injective object in the category of abelian groups; for this reason, a divisible group is sometimes called an injective group. An abelian group is p-divisible for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Injective Cogenerator
In category theory, a branch of mathematics, the concept of an injective cogenerator is drawn from examples such as Pontryagin duality. Generators are objects which cover other objects as an approximation, and (dually) cogenerators are objects which envelope other objects as an approximation. More precisely: * A generator of a category with a zero object is an object ''G'' such that for every nonzero object H there exists a nonzero morphism f:''G'' → ''H''. * A cogenerator is an object ''C'' such that for every nonzero object ''H'' there exists a nonzero morphism f:''H'' → ''C''. (Note the reversed order). The abelian group case Assuming one has a category like that of abelian groups, one can in fact form direct sums of copies of ''G'' until the morphism :''f'': Sum(''G'') →''H'' is surjective; and one can form direct products of ''C'' until the morphism :''f'':''H''→ Prod(''C'') is injective. For example, the integers are a generator of the category of abelian g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |