HOME





Biangular Coordinates
In mathematics, biangular coordinates are a coordinate system for the plane where C_1 and C_2 are two fixed points, and the position of a point ''P'' not on the line \overline is determined by the angles \angle PC_1C_2 and \angle PC_2C_1. See also *Two-center bipolar coordinates * Bipolar coordinates *Sectrix of Maclaurin In geometry, a sectrix of Maclaurin is defined as the curve swept out by the point of intersection of two lines which are each revolving at constant rates about different points called poles. Equivalently, a sectrix of Maclaurin can be defined as ... References External linksG. B. M. Zerr Biangular Coordinates ''American Mathematical Monthly'' 17 (2), February 1910 J. C. L. Fish, ''Coordinates Of Elementary Surveying''George Shoobridge Carr, ''A synopsis of elementary results in pure mathematics''(see page 742) Coordinate systems {{geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coordinate System
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is significant, and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in "the ''x''-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and ''vice versa''; this is the basis of analytic geometry. Common coordinate systems Number line The simplest example of a coordinate system is the identification of points on a line with real numbers using the '' number line''. In this system, an arbitrary point ''O'' (the ''origin'') is chosen on a given line. The coordinate of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plane (geometry)
In mathematics, a plane is a Euclidean ( flat), two- dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise as subspaces of some higher-dimensional space, as with one of a room's walls, infinitely extended, or they may enjoy an independent existence in their own right, as in the setting of two-dimensional Euclidean geometry. Sometimes the word ''plane'' is used more generally to describe a two-dimensional surface, for example the hyperbolic plane and elliptic plane. When working exclusively in two-dimensional Euclidean space, the definite article is used, so ''the'' plane refers to the whole space. Many fundamental tasks in mathematics, geometry, trigonometry, graph theory, and graphing are performed in a two-dimensional space, often in the plane. Euclidean geometry Euclid set forth the first great landmark of mathematical thought, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line (geometry)
In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segment in everyday life, which has two points to denote its ends. Lines can be referred by two points that lay on it (e.g., \overleftrightarrow) or by a single letter (e.g., \ell). Euclid described a line as "breadthless length" which "lies evenly with respect to the points on itself"; he introduced several postulates as basic unprovable properties from which he constructed all of geometry, which is now called Euclidean geometry to avoid confusion with other geometries which have been introduced since the end of the 19th century (such as non-Euclidean, projective and affine geometry). In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in analy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angle
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles are also formed by the intersection of two planes. These are called dihedral angles. Two intersecting curves may also define an angle, which is the angle of the rays lying tangent to the respective curves at their point of intersection. ''Angle'' is also used to designate the measure of an angle or of a rotation. This measure is the ratio of the length of a circular arc to its radius. In the case of a geometric angle, the arc is centered at the vertex and delimited by the sides. In the case of a rotation, the arc is centered at the center of the rotation and delimited by any other point and its image by the rotation. History and etymology The word ''angle'' comes from the Latin word ''angulus'', meaning "corner"; cognate words are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Two-center Bipolar Coordinates
In mathematics, two-center bipolar coordinates is a coordinate system based on two coordinates which give distances from two fixed centers c_1 and c_2. This system is very useful in some scientific applications (e.g. calculating the electric field of a dipole on a plane). Transformation to Cartesian coordinates When the centers are at (+a, 0) and (-a, 0), the transformation to Cartesian coordinates (x, y) from two-center bipolar coordinates (r_1, r_2) is :x = \frac :y = \pm \frac\sqrt Transformation to polar coordinates When ''x'' > 0, the transformation to polar coordinates from two-center bipolar coordinates is :r = \sqrt :\theta = \arctan\left( \frac \right) where 2 a is the distance between the poles (coordinate system centers). See also * Bipolar coordinates * Biangular coordinates *Lemniscate of Bernoulli In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points and , known as foci, at distance from each other as the locus of poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bipolar Coordinates
Bipolar coordinates are a two-dimensional orthogonal coordinate system based on the Apollonian circles.Eric W. Weisstein, Concise Encyclopedia of Mathematics CD-ROM, ''Bipolar Coordinates'', CD-ROM edition 1.0, May 20, 1999 Confusingly, the same term is also sometimes used for two-center bipolar coordinates. There is also a third system, based on two poles ( biangular coordinates). The term "bipolar" is further used on occasion to describe other curves having two singular points (foci), such as ellipses, hyperbolas, and Cassini ovals. However, the term ''bipolar coordinates'' is reserved for the coordinates described here, and never used for systems associated with those other curves, such as elliptic coordinates. Definition The system is based on two foci ''F''1 and ''F''2. Referring to the figure at right, the ''σ''-coordinate of a point ''P'' equals the angle ''F''1 ''P'' ''F''2, and the ''τ''-coordinate equals the natural logarithm of the ratio of the d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sectrix Of Maclaurin
In geometry, a sectrix of Maclaurin is defined as the curve swept out by the point of intersection of two lines which are each revolving at constant rates about different points called poles. Equivalently, a sectrix of Maclaurin can be defined as a curve whose equation in biangular coordinates is linear. The name is derived from the trisectrix of Maclaurin (named for Colin Maclaurin), which is a prominent member of the family, and their sectrix property, which means they can be used to divide an angle into a given number of equal parts. There are special cases known as arachnida or araneidans because of their spider-like shape, and Plateau curves after Joseph Plateau who studied them. Equations in polar coordinates We are given two lines rotating about two poles P and P_1. By translation and rotation we may assume P = (0,0) and P_1 = (a, 0). At time t, the line rotating about P has angle \theta = \kappa t + \alpha and the line rotating about P_1 has angle \theta_1 = \kappa_1 t + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]