HOME





Beta Dual
In functional analysis and related areas of mathematics, the beta-dual or -dual is a certain linear subspace of the algebraic dual of a sequence space. Definition Given a sequence space , the -dual of is defined as :X^:= \left \. Here, \mathbb\in\ so that \mathbb denotes either the real or complex scalar field. If is an FK-space then each in defines a continuous linear form on :f_y(x) := \sum_^ x_i y_i \qquad x \in X. Examples * c_0^\beta = \ell^1 * (\ell^1)^\beta = \ell^\infty * \omega^\beta = \ Properties The beta-dual of an FK-space is a linear subspace of the continuous dual In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V,'' together with the vector space structure of pointwise addition and scalar multiplication by const ... of . If is an FK-AK space then the beta dual is linear isomorphic to the continuous dual. {{mathanalysis-stub Functional analysis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, or Topological space#Definitions, topology) and the linear transformation, linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous function, continuous or unitary operator, unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Dual
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V,'' together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space. Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. Early terms for ''dual'' include ''polarer Raum'' ahn 1927 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sequence Space
In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field ''K'' of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in ''K'', and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication. All sequence spaces are linear subspaces of this space. Sequence spaces are typically equipped with a norm, or at least the structure of a topological vector space. The most important sequence spaces in analysis are the spaces, consisting of the -power summable sequences, with the ''p''-norm. These are special cases of L''p'' spaces for the counting measure on the set of natural numbers. Other important classes of sequences ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FK-space
In functional analysis and related areas of mathematics a FK-space or Fréchet coordinate space is a sequence space equipped with a topological structure such that it becomes a Fréchet space. FK-spaces with a normable topology are called BK-spaces. There only exists one topology to turn a sequence space into a Fréchet space, namely the topology of pointwise convergence. Thus the name ''coordinate space'' because a sequence in an FK-space converges if and only if it converges for each coordinate. FK-spaces are examples of topological vector spaces. They are important in summability theory. Definition A FK-space is a sequence space of X, that is a linear subspace of vector space of all complex valued sequences, equipped with the topology of pointwise convergence. We write the elements of X as \left(x_n\right)_ with x_n \in \Complex. Then sequence \left(a_n\right)_^ in X converges to some point \left(x_n\right)_ if it converges pointwise for each n. That is \lim_ \left( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Continuous Linear Form
In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces. An operator between two normed spaces is a bounded linear operator if and only if it is a continuous linear operator. Continuous linear operators Characterizations of continuity Suppose that F : X \to Y is a linear operator between two topological vector spaces (TVSs). The following are equivalent: F is continuous. F is continuous at some point x \in X. F is continuous at the origin in X. If Y is locally convex then this list may be extended to include: for every continuous seminorm q on Y, there exists a continuous seminorm p on X such that q \circ F \leq p. If X and Y are both Hausdorff locally convex spaces then this list may be extended to include: F is weakly continuous and its transpose ^t F : Y^ \to X^ maps equicontinuous subsets of Y^ to equicontinuous subsets of X^. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Subspace
In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a ''function (mathematics), function'' (or ''mapping (mathematics), mapping''); * linearity of a ''polynomial''. An example of a linear function is the function defined by f(x)=(ax,bx) that maps the real line to a line in the Euclidean plane R2 that passes through the origin. An example of a linear polynomial in the variables X, Y and Z is aX+bY+cZ+d. Linearity of a mapping is closely related to ''Proportionality (mathematics), proportionality''. Examples in physics include the linear relationship of voltage and Electric current, current in an electrical conductor (Ohm's law), and the relationship of mass and weight. By contrast, more complicated relationships, such as between velocity and kinetic energy, are ''Nonlinear system, nonlinear''. Generalized for functions in more than one dimension (mathematics), dimension, linearity means the property of a function of b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continuous Dual
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V,'' together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space. Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. Early terms for ''dual'' include ''polarer Raum'' ahn 192 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FK-AK Space
In functional analysis and related areas of mathematics, an FK-AK space or FK-space with the AK property is an FK-space which contains the space of finite sequences and has a Schauder basis. Examples and non-examples * c_0 the space of convergent sequences with the supremum norm has the AK property. * \ell^p (1 \leq p < \infty) the absolutely p-summable sequences with the \, \cdot\, _p norm have the AK property. * \ell^\infty with the supremum norm does not have the AK property.


Properties

An FK-AK space E has the property E' \simeq E^\beta that is the of E is
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]