HOME





Automatic Image Annotation
Automatic image annotation (also known as automatic image tagging or linguistic indexing) is the process by which a computer system automatically assigns metadata in the form of captioning or keywords to a digital image. This application of computer vision techniques is used in image retrieval systems to organize and locate images of interest from a database. This method can be regarded as a type of multi-class image classification with a very large number of classes - as large as the vocabulary size. Typically, image analysis in the form of extracted feature vectors and the training annotation words are used by machine learning techniques to attempt to automatically apply annotations to new images. The first methods learned the correlations between image features and training annotations. Subsequently, techniques were developed using machine translation to to attempt to translate the textual vocabulary into the 'visual vocabulary,' represented by clustered regions known as ''b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Feature (computer Vision)
In computer vision and image processing, a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions. More broadly a ''feature'' is any piece of information that is relevant for solving the computational task related to a certain application. This is the same sense as feature in machine learning and pattern recognition generally, though image processing has a very sophisticated collection of features. The feature concept is very general and the choice of features in a particular computer vision system may be highly dependent on the specific problem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Multiclass Labeling
Multiclass may refer to: * Multiclass classification, in machine learning * Having multiple character classes in a role-playing game A role-playing game (sometimes spelled roleplaying game, or abbreviated as RPG) is a game in which players assume the roles of player character, characters in a fictional Setting (narrative), setting. Players take responsibility for acting out ... ** Character class (Dungeons & Dragons)#Multiclassing {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Supervised Learning
In machine learning, supervised learning (SL) is a paradigm where a Statistical model, model is trained using input objects (e.g. a vector of predictor variables) and desired output values (also known as a ''supervisory signal''), which are often human-made labels. The training process builds a function that maps new data to expected output values. An optimal scenario will allow for the algorithm to accurately determine output values for unseen instances. This requires the learning algorithm to Generalization (learning), generalize from the training data to unseen situations in a reasonable way (see inductive bias). This statistical quality of an algorithm is measured via a ''generalization error''. Steps to follow To solve a given problem of supervised learning, the following steps must be performed: # Determine the type of training samples. Before doing anything else, the user should decide what kind of data is to be used as a Training, validation, and test data sets, trainin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Outline Of Object Recognition
Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated. Objects can even be recognized when they are partially obstructed from view. This task is still a challenge for computer vision systems. Many approaches to the task have been implemented over multiple decades. Approaches based on CAD-like object models * Edge detection * Primal sketch * Marr, Mohan and Nevatia * Lowe * Olivier Faugeras Recognition by parts * Generalized cylinders ( Thomas Binford) * Geons (Irving Biederman) * Dickinson, Forsyth and Ponce Appearance-based methods * Use example images (called templates or exemplars) of the objects to perform recognition * Objects look different ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Object Detection
Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. Well-researched domains of object detection include face detection and pedestrian detection. Object detection has applications in many areas of computer vision, including image retrieval and video surveillance. Uses It is widely used in computer vision tasks such as image annotation, vehicle counting, activity recognition, face detection, face recognition, video object co-segmentation. It is also used in tracking objects, for example tracking a ball during a football match, tracking movement of a cricket bat, or tracking a person in a video. Often, the test images are sampled from a different data distribution, making the object detection task significantly more difficult. To address the challenges caused by the domain gap between training and test ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Object Categorization From Image Search
In computer vision, object categorization from image search is the problem of training a classifier to recognize categories of objects using only image search, i.e., images retrieved automatically with an Internet search engine. Ideally, automatic image collection would allow classifiers to be trained with nothing but the category names as input. This problem is closely related to that of content-based image retrieval (CBIR), where the goal is to return better image search results rather than training a classifier for image recognition. Traditionally, classifiers are trained using sets of images that are labeled by hand. Collecting such a set of images is often a very time-consuming and laborious process. The use of Internet search engines to automate the process of acquiring large sets of labeled images has been described as a potential way of greatly facilitating computer vision research. Challenges Unrelated images One problem with using Internet image search results as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Content-based Image Retrieval
Content-based image retrieval, also known as query by image content ( QBIC) and content-based visual information retrieval (CBVIR), is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases (see this surveyContent-based Multimedia Information Retrieval: State of the Art and Challenges' (Original source, 404'''Content-based Multimedia Information Retrieval: State of the Art and Challenges'', Michael Lew, et al., ACM Transactions on Multimedia Computing, Communications, and Applications, pp. 1–19, 2006. for a scientific overview of the CBIR field). Content-based image retrieval is opposed to traditional concept-based approaches (see Concept-based image indexing). "Content-based" means that the search analyzes the contents of the image rather than the metadata such as keywords, tags, or descriptions associated with the image. The term "content" in this context might refer to colors, s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Texture (visual Arts)
In the visual arts, texture refers to the perceived surface quality of a work of art. It is an element found in both two-dimensional and three-dimensional designs, and it is characterized by its visual and physical properties. The use of ''texture'', in conjunction with other design elements, can convey a wide range of messages and evoke various emotions. Physical The physical texture, also known as ''actual texture'' or ''tactile texture,'' refers to the patterns of variations found on a solid surface. These can encompass a wide range of materials, including but not limited to fur, canvas, wood grain, sand, leather, satin, eggshell, matte, or smooth surfaces like metal or glass. Physical texture differentiates itself from visual texture by having a ''physical quality'' that can be felt by touching the surface. The specific use of texture can impact the perceived smoothness or roughness conveyed by an artwork. For instance, ''rough surfaces'' can create a visually ac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Content-based Image Retrieval
Content-based image retrieval, also known as query by image content ( QBIC) and content-based visual information retrieval (CBVIR), is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases (see this surveyContent-based Multimedia Information Retrieval: State of the Art and Challenges' (Original source, 404'''Content-based Multimedia Information Retrieval: State of the Art and Challenges'', Michael Lew, et al., ACM Transactions on Multimedia Computing, Communications, and Applications, pp. 1–19, 2006. for a scientific overview of the CBIR field). Content-based image retrieval is opposed to traditional concept-based approaches (see Concept-based image indexing). "Content-based" means that the search analyzes the contents of the image rather than the metadata such as keywords, tags, or descriptions associated with the image. The term "content" in this context might refer to colors, s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Machine Translation
Machine translation is use of computational techniques to translate text or speech from one language to another, including the contextual, idiomatic and pragmatic nuances of both languages. Early approaches were mostly rule-based or statistical. These methods have since been superseded by neural machine translation and large language models. History Origins The origins of machine translation can be traced back to the work of Al-Kindi, a ninth-century Arabic cryptographer who developed techniques for systemic language translation, including cryptanalysis, frequency analysis, and probability and statistics, which are used in modern machine translation. The idea of machine translation later appeared in the 17th century. In 1629, René Descartes proposed a universal language, with equivalent ideas in different tongues sharing one symbol. The idea of using digital computers for translation of natural languages was proposed as early as 1947 by England's A. D. Booth and Warr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Machine Learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task (computing), tasks without explicit Machine code, instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed Neural network (machine learning), neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance. ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics. Statistics and mathematical optimisation (mathematical programming) methods comprise the foundations of machine learning. Data mining is a related field of study, focusing on exploratory data analysi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]