Arithmetical Ring
In algebra, a commutative ring ''R'' is said to be arithmetical (or arithmetic) if any of the following equivalent conditions hold: # The localization R_\mathfrak of ''R'' at \mathfrak is a uniserial ring for every maximal ideal \mathfrak of ''R''. # For all ideals \mathfrak, \mathfrak, and \mathfrak, #:\mathfrak \cap (\mathfrak + \mathfrak) = (\mathfrak \cap \mathfrak) + (\mathfrak \cap \mathfrak) # For all ideals \mathfrak, \mathfrak, and \mathfrak, #:\mathfrak + (\mathfrak \cap \mathfrak) = (\mathfrak + \mathfrak) \cap (\mathfrak + \mathfrak) The last two conditions both say that the lattice of all ideals of ''R'' is distributive. An arithmetical domain is the same thing as a Prüfer domain In mathematics, a Prüfer domain is a type of commutative ring that generalizes Dedekind domains in a non- Noetherian context. These rings possess the nice ideal and module theoretic properties of Dedekind domains, but usually only for finitel .... References * * * External links ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Localization Of A Ring
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module ''R'', so that it consists of fractions \frac, such that the denominator ''s'' belongs to a given subset ''S'' of ''R''. If ''S'' is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field \Q of rational numbers from the ring \Z of integers. The technique has become fundamental, particularly in algebraic geometry, as it provides a natural link to sheaf theory. In fact, the term ''localization'' originated in algebraic geometry: if ''R'' is a ring of functions defined on some geometric object ( algebraic variety) ''V'', and one wants to study this variety "locally" near a point ''p'', then one considers the set ''S'' of all functions that are not zero at ''p'' and localiz ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniserial Ring
In abstract algebra, a uniserial module ''M'' is a module over a ring ''R'', whose submodules are totally ordered by inclusion. This means simply that for any two submodules ''N''1 and ''N''2 of ''M'', either N_1\subseteq N_2 or N_2\subseteq N_1. A module is called a serial module if it is a direct sum of uniserial modules. A ring ''R'' is called a right uniserial ring if it is uniserial as a right module over itself, and likewise called a right serial ring if it is a right serial module over itself. Left uniserial and left serial rings are defined in an analogous way, and are in general distinct from their right counterparts. An easy motivating example is the quotient ring \mathbb/n\mathbb for any integer n>1. This ring is always serial, and is uniserial when ''n'' is a prime power. The term ''uniserial'' has been used differently from the above definition: for clarification see below. A partial alphabetical list of important contributors to the theory of serial rings incl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maximal Ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals contained between ''I'' and ''R''. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields. In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the poset of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one sided maximal ideal ''A'' is not necessarily two-sided, the quotient ''R''/''A'' is not necessarily a ring, but it is a simple module over ''R''. If ''R'' has a unique maximal right ideal, then ''R'' is known as a local ring, and the maximal right ideal is also the unique m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lattice (order)
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join (mathematics), join) and a unique infimum (also called a greatest lower bound or meet (mathematics), meet). An example is given by the power set of a set, partially ordered by Subset, inclusion, for which the supremum is the Union (set theory), union and the infimum is the Intersection (set theory), intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor. Lattices can also be characterized as algebraic structures satisfying certain axiomatic Identity (mathematics), identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilatti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distributive Lattice
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. Definition As in the case of arbitrary lattices, one can choose to consider a distributive lattice ''L'' either as a structure of order theory or of universal algebra. Both views and their mutual correspondence are discussed in the article on lattices. In the present situation, the algebraic description appears to be more convenient. A lattice (''L'',∨,∧) is distributive if the following additional identity holds for all ''x'', ''y'', and ''z'' in ''L'': : ''x'' ∧ (''y'' ∨ ''z'') = (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z''). Viewing lattices as part ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Domain (ring Theory)
In algebra, a domain is a nonzero ring in which implies or .Lam (2001), p. 3 (Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain. Mathematical literature contains multiple variants of the definition of "domain".Some authors also consider the zero ring to be a domain: see Polcino M. & Sehgal (2002), p. 65. Some authors apply the term "domain" also to rngs with the zero-product property; such authors consider ''n''Z to be a domain for each positive integer ''n'': see Lanski (2005), p. 343. But integral domains are always required to be nonzero and to have a 1. Examples and non-examples * The ring Z/6Z is not a domain, because the images of 2 and 3 in this ring are nonzero elements with product 0. More generally, for a positive integer ''n'', the ring Z/''n''Z is a domain if and only ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prüfer Domain
In mathematics, a Prüfer domain is a type of commutative ring that generalizes Dedekind domains in a non- Noetherian context. These rings possess the nice ideal and module theoretic properties of Dedekind domains, but usually only for finitely generated modules. Prüfer domains are named after the German mathematician Heinz Prüfer. Examples The ring of entire functions on the open complex plane C form a Prüfer domain. The ring of integer valued polynomials with rational coefficients is a Prüfer domain, although the ring \mathbb /math> of integer polynomials is not . While every number ring is a Dedekind domain, their union, the ring of algebraic integers, is a Prüfer domain. Just as a Dedekind domain is locally a discrete valuation ring, a Prüfer domain is locally a valuation ring, so that Prüfer domains act as non-noetherian analogues of Dedekind domains. Indeed, a domain that is the direct limit of subrings that are Prüfer domains is a Prüfer domain . Man ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Academic Press
Academic Press (AP) is an academic book publisher founded in 1941. It was acquired by Harcourt, Brace & World in 1969. Reed Elsevier bought Harcourt in 2000, and Academic Press is now an imprint of Elsevier. Academic Press publishes reference books, serials and online products in the subject areas of: * Communications engineering * Economics * Environmental science * Finance * Food science and nutrition * Geophysics * Life sciences * Mathematics and statistics * Neuroscience * Physical sciences * Psychology Psychology is the scientific study of mind and behavior. Psychology includes the study of conscious and unconscious phenomena, including feelings and thoughts. It is an academic discipline of immense scope, crossing the boundaries betwe ... Well-known products include the '' Methods in Enzymology'' series and encyclopedias such as ''The International Encyclopedia of Public Health'' and the ''Encyclopedia of Neuroscience''. See also * Akademische Ve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |