HOME





Amicable Triple
In mathematics, an amicable triple is a set of three different numbers so related that the ''restricted'' sum of the divisors of each is equal to the sum of other two numbers. In another equivalent characterization, an amicable triple is a set of three different numbers so related that the sum of the divisors of each is equal to the sum of the three numbers. So a triple (''a'', ''b'', ''c'') of natural numbers is called amicable if ''s''(''a'') = ''b'' + ''c'', ''s''(''b'') = ''a'' + ''c'' and ''s''(''c'') = ''a'' + ''b'', or equivalently if σ(''a'') = σ(''b'') = σ(''c'') = ''a'' + ''b'' + ''c''. Here σ(''n'') is the sum of all positive divisors, and ''s''(''n'') = σ(''n'') − ''n'' is the aliquot sum In number theory, the aliquot sum of a positive integer is the sum of all proper divisors of , that is, all divisors of other than itself. That is, s(n)=\sum_ d \, . It can be used to characteriz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Set (mathematics)
In mathematics, a set is a collection of different things; the things are '' elements'' or ''members'' of the set and are typically mathematical objects: numbers, symbols, points in space, lines, other geometric shapes, variables, or other sets. A set may be finite or infinite. There is a unique set with no elements, called the empty set; a set with a single element is a singleton. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. Context Before the end of the 19th century, sets were not studied specifically, and were not clearly distinguished from sequences. Most mathematicians considered infinity as potentialmeaning that it is the result of an endless processand were reluctant to consider infinite sets, that is sets whose number of members is not a natural number. Specific ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Aliquot Sum
In number theory, the aliquot sum of a positive integer is the sum of all proper divisors of , that is, all divisors of other than itself. That is, s(n)=\sum_ d \, . It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number. Examples For example, the proper divisors of 12 (that is, the positive divisors of 12 that are not equal to 12) are , and 6, so the aliquot sum of 12 is 16 i.e. (). The values of for are: :0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, ... Characterization of classes of numbers The aliquot sum function can be used to characterize several notable classes of numbers: *1 is the only number whose aliquot sum is 0. *A number is prime if and only if its aliquot sum is 1. *The aliquot sum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Divisor Function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function ''σ''''z''(''n''), for a real or complex number ''z'', is defined as the sum of the ''z''th powers of the positive divisors of ''n''. It can be expressed in sigma notation as :\sigma_z(n)=\sum_ d^z\,\! , where is shorthand fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Divisor Function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function ''σ''''z''(''n''), for a real or complex number ''z'', is defined as the sum of the ''z''th powers of the positive divisors of ''n''. It can be expressed in sigma notation as :\sigma_z(n)=\sum_ d^z\,\! , where is shorthand fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Integer Sequences
In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified ''explicitly'' by giving a formula for its ''n''th term, or ''implicitly'' by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description . The sequence 0, 3, 8, 15, ... is formed according to the formula ''n''2 − 1 for the ''n''th term: an explicit definition. Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, , even though we do not have a formula for the ''n''th perfect number. Computable and definable sequences An integer sequence is computable if there exists an algorithm that, given '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]