Affine Arithmetic
Affine arithmetic (AA) is a model for self-validated numerical analysis. In AA, the quantities of interest are represented as affine combinations (affine forms) of certain primitive variables, which stand for sources of uncertainty in the data or approximations made during the computation. Affine arithmetic is meant to be an improvement on interval arithmetic (IA), and is similar to generalized interval arithmetic, first-order Taylor arithmetic, the center-slope model, and ellipsoid calculus — in the sense that it is an automatic method to derive first-order guaranteed approximations to general formulas. Affine arithmetic is potentially useful in every numeric problem where one needs guaranteed enclosures to smooth functions, such as solving systems of non-linear equations, analyzing dynamical systems, integrating functions, differential equations, etc. Applications include ray tracing, plotting curves, intersecting implicit and parametric surfaces, error analysis ( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Validated Numerics
Validated numerics, or rigorous computation, verified computation, reliable computation, numerical verification () is numerics including mathematically strict error (rounding error, truncation error, discretization error) evaluation, and it is one field of numerical analysis. For computation, interval arithmetic is most often used, where all results are represented by intervals. Validated numerics were used by Warwick Tucker in order to solve the 14th of Smale's problems, and today it is recognized as a powerful tool for the study of dynamical systems. Importance Computation without verification may cause unfortunate results. Below are some examples. Rump's example In the 1980s, Rump made an example. He made a complicated function and tried to obtain its value. Single precision, double precision, extended precision results seemed to be correct, but its plus-minus sign was different from the true value. Phantom solution Breuer–Plum–McKenna used the spectrum method to solve the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that appeared more than 2000 years ago in Euclid's ''Elements'': "The urvedline is ��the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which ��will leave from its imaginary moving some vestige in length, exempt of any width." This definition of a curve has been formalized in modern mathematics as: ''A curve is the image of an interval to a topological space by a continuous function''. In some contexts, the function that defines the curve is called a ''parametrization'', and the curve is a parametric curve. In this article, these curves are sometimes called ''topological curves'' to distinguish them from more constrained curves su ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sparse Array
In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of rows or columns. By contrast, if most of the elements are non-zero, the matrix is considered dense. The number of zero-valued elements divided by the total number of elements (e.g., ''m'' × ''n'' for an ''m'' × ''n'' matrix) is sometimes referred to as the sparsity of the matrix. Conceptually, sparsity corresponds to systems with few pairwise interactions. For example, consider a line of balls connected by springs from one to the next: this is a sparse system, as only adjacent balls are coupled. By contrast, if the same line of balls were to have springs connecting each ball to all other balls, the system would correspond to a dense matrix. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zonotope
In geometry, a zonohedron is a convex polyhedron that is point symmetry, centrally symmetric, every face of which is a polygon that is centrally symmetric (a zonogon). Any zonohedron may equivalently be described as the Minkowski addition, Minkowski sum of a set of line segments in three-dimensional space, or as a three-dimensional Projection (mathematics), projection of a hypercube. Zonohedra were originally defined and studied by Evgraf Stepanovich Fyodorov, E. S. Fedorove, a Russian Crystallography, crystallographer. More generally, in any dimension, the Minkowski sum of line segments forms a polytope known as a zonotope. Zonohedra that tile space The original motivation for studying zonohedra is that the Voronoi diagram of any Lattice (group), lattice forms a convex uniform honeycomb in which the cells are zonohedra. Any zonohedron formed in this way can Honeycomb (geometry), tessellate 3-dimensional space and is called a primary parallelohedron. Each primary parallelohedron ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rectangle
In Euclidean geometry, Euclidean plane geometry, a rectangle is a Rectilinear polygon, rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a ''square''. The term "wikt:oblong, oblong" is used to refer to a non-square rectangle. A rectangle with Vertex (geometry), vertices ''ABCD'' would be denoted as . The word rectangle comes from the Latin ''rectangulus'', which is a combination of ''rectus'' (as an adjective, right, proper) and ''angulus'' (angle). A #Crossed rectangles, crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals (therefore only two sides are parallel). It is a special case of an antiparallelogram, and its angles are not right angles an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hexagon
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A regular hexagon is defined as a hexagon that is both equilateral and equiangular. In other words, a hexagon is said to be regular if the edges are all equal in length, and each of its internal angle is equal to 120°. The Schläfli symbol denotes this polygon as \ . However, the regular hexagon can also be considered as the cutting off the vertices of an equilateral triangle, which can also be denoted as \mathrm\ . A regular hexagon is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an inscribed circle). The common length of the sides equals the radius of the circumscribed circle or circumcircle, which equals \tfrac times the apothem (radius of the inscribed circle). Measurement The longest diagonals of a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of sets, also known as an -fold Cartesian product, which can be represented by an -dimensional array, where each element is an -tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Set-theoretic definition A rigorous definition of the Cartesian product re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electric Circuit
An electrical network is an interconnection of electrical components (e.g., battery (electricity), batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, Electrical resistance and conductance, resistances, inductances, capacitances). An electrical circuit is a network consisting of a closed loop, giving a return path for the current. Thus all circuits are networks, but not all networks are circuits (although networks without a closed loop are often referred to as "open circuits"). A resistive network is a network containing only resistors and ideal current and voltage sources. Network analysis (electrical circuits), Analysis of resistive networks is less complicated than analysis of networks containing capacitors and inductors. If the sources are constant (Direct current, DC) sources, the result is a DC network. The effective resistance and current dist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Process Control
Industrial process control (IPC) or simply process control is a system used in modern manufacturing which uses the principles of control theory and physical industrial control systems to monitor, control and optimize continuous Industrial processes, industrial production processes using control algorithms. This ensures that the industrial machines run smoothly and safely in factories and efficiently use energy to transform raw materials into high-quality finished products with reliable consistency while reducing Efficient energy use#Industry, energy waste and economic costs, something which could not be achieved purely by human manual control. In IPC, control theory provides the theoretical framework to understand system dynamics, predict outcomes and design control strategies to ensure predetermined objectives, utilizing concepts like feedback loops, stability analysis and controller design. On the other hand, the physical apparatus of IPC, based on automation technologies, cons ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Error Analysis (mathematics)
In mathematics, error analysis is the study of kind and quantity of error, or uncertainty, that may be present in the solution to a problem. This issue is particularly prominent in applied areas such as numerical analysis and statistics. Error analysis in numerical modeling In numerical simulation or modeling of real systems, error analysis is concerned with the changes in the output of the model as the parameters to the model vary about a mean. For instance, in a system modeled as a function of two variables z \,=\, f(x,y). Error analysis deals with the propagation of the numerical errors in x and y (around mean values \bar and \bar) to error in z (around a mean \bar). In numerical analysis, error analysis comprises both forward error analysis and backward error analysis. Forward error analysis Forward error analysis involves the analysis of a function z' = f'(a_0,\,a_1,\,\dots,\,a_n) which is an approximation (usually a finite polynomial) to a function z \,=\, f(a_0,a_1,\d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parametric Surface
A parametric surface is a surface in the Euclidean space \R^3 which is defined by a parametric equation with two parameters Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization. Examples * The simplest type of parametric surfaces is given by the graphs of functions of two variables: z = f(x,y), \quad \mathbf r(x,y) = (x, y, f(x,y)). * A rational surface is a surface that admits parameterizations by a rational function. A rational surface is an algebraic surface. Given an algebraic surface, it is commonly easier to decide if it i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Implicit Surface
In mathematics, an implicit surface is a Surface (geometry), surface in Euclidean space defined by an equation : F(x,y,z)=0. An ''implicit surface'' is the set of Zero of a function, zeros of a Function of several real variables, function of three variables. ''Implicit function, Implicit'' means that the equation is not solved for or or . The graph of a function is usually described by an equation z=f(x,y) and is called an ''explicit'' representation. The third essential description of a surface is the ''Parametric equation, parametric'' one: (x(s,t),y(s,t), z(s,t)), where the -, - and -coordinates of surface points are represented by three functions x(s,t)\, , y(s,t)\, , z(s,t) depending on common parameters s,t. Generally the change of representations is simple only when the explicit representation z=f(x,y) is given: z-f(x,y)=0 (implicit), (s,t,f(s,t)) (parametric). ''Examples'': #The Plane (geometry), plane x+2y-3z+1=0. #The Sphere (geometry), sphere x^2+y^2+z^2-4=0 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |