HOME



picture info

Accumulation Point
In mathematics, a limit point, accumulation point, or cluster point of a Set (mathematics), set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood (mathematics), neighbourhood of x contains a point of S other than x itself. A limit point of a set S does not itself have to be an element of S. There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence (x_n)_ in a topological space X is a point x such that, for every neighbourhood V of x, there are infinitely many natural numbers n such that x_n \in V. This definition of a cluster or accumulation point of a sequence generalizes to Net (mathematics), nets and Filter (set theory), filters. The similarly named notion of a (respectively, a limit point of a filter, a limit point of a net) by definition refers to a point that the Convergent sequence, sequence converges to (respectively, the Convergent filter, filter conver ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
In mathematics, a set is a collection of different things; the things are '' elements'' or ''members'' of the set and are typically mathematical objects: numbers, symbols, points in space, lines, other geometric shapes, variables, or other sets. A set may be finite or infinite. There is a unique set with no elements, called the empty set; a set with a single element is a singleton. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. Context Before the end of the 19th century, sets were not studied specifically, and were not clearly distinguished from sequences. Most mathematicians considered infinity as potentialmeaning that it is the result of an endless processand were reluctant to consider infinite sets, that is sets whose number of members is not a natural number. Specific ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit (mathematics)
In mathematics, a limit is the value that a function (or sequence) approaches as the argument (or index) approaches some value. Limits of functions are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals. The concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to limit and direct limit in category theory. The limit inferior and limit superior provide generalizations of the concept of a limit which are particularly relevant when the limit at a point may not exist. Notation In formulas, a limit of a function is usually written as : \lim_ f(x) = L, and is read as "the limit of of as approaches equals ". This means that the value of the function can be made arbitrarily close to , by choosing sufficiently close to . Alternatively, the fact that a function approaches the limit as approaches is sometimes denoted by a right arrow (→ or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Condensation Point
In mathematics, a condensation point ''p'' of a subset ''S'' of a topological space is any point ''p'' such that every neighborhood of ''p'' contains uncountably many points of ''S''. Thus "condensation point" is synonymous with "\aleph_1- accumulation point". Lynn Steen and J. Arthur Seebach, Jr., ''Counterexamples in Topology'', 2nd Edition, pg. 5 Examples *If ''S'' = (0,1) is the open unit interval, a subset of the real numbers, then 0 is a condensation point of ''S''. *If ''S'' is an uncountable subset of a set ''X'' endowed with the indiscrete topology In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete. Intuitively, this has the conseque ..., then any point ''p'' of ''X'' is a condensation point of ''X'' as the only neighborhood of ''p'' is ''X'' itself. References Further reading * Walter Rudin, ''Principles of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uncountable Set
In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than aleph-null, the cardinality of the natural numbers. Examples of uncountable sets include the set of all real numbers and set of all subsets of the natural numbers. Characterizations There are many equivalent characterizations of uncountability. A set ''X'' is uncountable if and only if any of the following conditions hold: * There is no injective function (hence no bijection) from ''X'' to the set of natural numbers. * ''X'' is nonempty and for every ω- sequence of elements of ''X'', there exists at least one element of X not included in it. That is, ''X'' is nonempty and there is no surjective function from the natural numbers to ''X''. * The cardinality of ''X'' is neither finite nor equal to \aleph_0 ( aleph-null). * The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derived Set (mathematics)
In mathematics, more specifically in point-set topology, the derived set of a subset S of a topological space is the set of all limit points of S. It is usually denoted by S'. The concept was first introduced by Georg Cantor in 1872 and he developed set theory in large part to study derived sets on the real line. Definition The derived set of a subset S of a topological space X, denoted by S', is the set of all points x \in X that are limit points of S, that is, points x such that every neighbourhood of x contains a point of S other than x itself. Examples If \Reals is endowed with its usual Euclidean topology then the derived set of the half-open interval , 1) is the closed interval [0, 1 Consider \Reals with the Topology (structure)">topology (open sets) consisting of the empty set and any subset of \Reals that contains 1. The derived set of A := \ is A' = \Reals \setminus \. Properties Let X denote a topological space in what follows. If A and B are subsets of X, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Of A Sequence
As the positive integer n becomes larger and larger, the value n\times \sin\left(\tfrac1\right) becomes arbitrarily close to 1. We say that "the limit of the sequence n \times \sin\left(\tfrac1\right) equals 1." In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the \lim symbol (e.g., \lim_a_n).Courant (1961), p. 29. If such a limit exists and is finite, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. Limits can be defined in any metric space, metric or topological space, but are usually first encountered in the real numbers. History The Greek philosopher Zeno of Elea is famous for formulating Zeno's paradoxes, paradoxes that involve limiting processes. Leucippus, Democritus, Antiphon (person), Antiphon, Eudoxus of Cnidus, Eudoxus, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


First-countable Space
In topology, a branch of mathematics, a first-countable space is a topological space satisfying the "first axiom of countability". Specifically, a space X is said to be first-countable if each point has a countable neighbourhood basis (local base). That is, for each point x in X there exists a sequence N_1, N_2, \ldots of neighbourhoods of x such that for any neighbourhood N of x there exists an integer i with N_i contained in N. Since every neighborhood of any point contains an open neighborhood of that point, the neighbourhood basis can be chosen without loss of generality to consist of open neighborhoods. Examples and counterexamples The majority of 'everyday' spaces in mathematics are first-countable. In particular, every metric space is first-countable. To see this, note that the set of open balls centered at x with radius 1/n for integers form a countable local base at x. An example of a space that is not first-countable is the cofinite topology on an uncountable s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fréchet–Urysohn Space
In the field of topology, a Fréchet–Urysohn space is a topological space X with the property that for every subset S \subseteq X the closure of S in X is identical to the ''sequential'' closure of S in X. Fréchet–Urysohn spaces are a special type of sequential space. The property is named after Maurice Fréchet and Pavel Urysohn. Definitions Let (X, \tau) be a topological space. The of S in (X, \tau) is the set: \begin \operatorname S :&= S := \left\ \end where \operatorname_X S or \operatorname_ S may be written if clarity is needed. A topological space (X, \tau) is said to be a if \operatorname_X S = \operatorname_X S for every subset S \subseteq X, where \operatorname_X S denotes the closure of S in (X, \tau). Sequentially open/closed sets Suppose that S \subseteq X is any subset of X. A sequence x_1, x_2, \ldots is if there exists a positive integer N such that x_i \in S for all indices i \geq N. The set S is called if every sequence \left(x_i\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metric Space
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), function called a metric or distance function. Metric spaces are a general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a Conceptual metaphor , metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different bra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T1 Space
In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms. Definitions Let ''X'' be a topological space and let ''x'' and ''y'' be points in ''X''. We say that ''x'' and ''y'' are if each lies in a neighbourhood that does not contain the other point. * ''X'' is called a T1 space if any two distinct points in ''X'' are separated. * ''X'' is called an R0 space if any two topologically distinguishable points in ''X'' are separated. A T1 space is also called an accessible space or a space with Fréchet topology and an R0 space is also called a symmetric space. (The term also has an entirely different meaning in functional analysis. For this reason, the term ''T1 space'' is preferred. There is also a n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neighbourhood (mathematics)
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and Interior (topology), interior. Intuitively speaking, a neighbourhood of a point is a Set (mathematics), set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a neighbourhood of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is equivalent to the point p \in X belonging to the Interior (topology)#Interior point, topological interior of V in X. The neighbourhood V need not be an open subset of X. When V is open (resp. closed, compact, etc.) in X, it is called an (resp. closed neighbourhood, compact neighbourhood, etc.). Some authors require neighbourhoods to be open, so i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagonal Argument
Diagonal argument can refer to: * Diagonal argument (proof technique), proof techniques used in mathematics. A diagonal argument, in mathematics, is a technique employed in the proofs of the following theorems: *Cantor's diagonal argument (the earliest) *Cantor's theorem *Russell's paradox * Diagonal lemma ** Gödel's first incompleteness theorem ** Tarski's undefinability theorem *Halting problem In computability theory (computer science), computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run for ... * Kleene's recursion theorem See also * Diagonalization (other) {{mathdab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]