Zip Tree
   HOME



picture info

Zip Tree
The zip tree was introduced as a variant of random binary search tree by Robert Tarjan, Caleb Levy, and Stephen Timmel. Zip trees are similar to max treaps except ranks are generated through a geometric distribution and maintain their max-heap property during insertions and deletions through unzipping and zipping rather than tree rotations. Nodes of the tree contain a distinct, comparable key and a numeric rank. The tree is max heap ordered with respect to the ranks with ties broken in favor of smaller keys. Nodes of the tree must contain distinct keys but allow for duplicate ranks. The rank tie-breaker favoring smaller keys creates a bias in the tree favoring smaller nodes. A slightly modified zip tree variant, zip-zip trees address this bias by introducing a different tie-breaker with a second rank. Operations Zip trees support the operations of a binary search tree In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a Roote ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Search Tree
In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a Rooted tree, rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree. The time complexity of operations on the binary search tree is Time complexity#Linear time, linear with respect to the height of the tree. Binary search trees allow Binary search algorithm, binary search for fast lookup, addition, and removal of data items. Since the nodes in a BST are laid out so that each comparison skips about half of the remaining tree, the lookup performance is proportional to that of binary logarithm. BSTs were devised in the 1960s for the problem of efficient storage of labeled data and are attributed to Conway Berners-Lee and David_Wheeler_(computer_scientist), David Wheeler. The performance of a binary search tree is dependent on the order of insertion of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Robert Tarjan
Robert Endre Tarjan (born April 30, 1948) is an American computer scientist and mathematician. He is the discoverer of several graph theory algorithms, including his strongly connected components algorithm, and co-inventor of both splay trees and Fibonacci heaps. Tarjan is currently the James S. McDonnell Distinguished University Professor of Computer Science at Princeton University. Personal life and education He was born in Pomona, California. His father, George Tarjan (1912–1991), raised in Hungary, was a child psychiatrist, specializing in mental retardation, and ran a state hospital. Robert Tarjan's younger brother James became a chess grandmaster. As a child, Robert Tarjan read a lot of science fiction, and wanted to be an astronomer. He became interested in mathematics after reading Martin Gardner's mathematical games column in Scientific American. He became seriously interested in math in the eighth grade, thanks to a "very stimulating" teacher. While he was in hig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Treap
In computer science, the treap and the randomized binary search tree are two closely related forms of binary search tree data structures that maintain a dynamic set of ordered keys and allow binary searches among the keys. After any sequence of insertions and deletions of keys, the shape of the tree is a random variable with the same probability distribution as a random binary tree; in particular, with high probability its height is proportional to the logarithm of the number of keys, so that each search, insertion, or deletion operation takes logarithmic time to perform. Description The treap was first described by Raimund Seidel and Cecilia R. Aragon in 1989; its name is a portmanteau word, portmanteau of Tree data structure, tree and heap (data structure), heap. It is a Cartesian tree in which each key is given a (randomly chosen) numeric priority. As with any binary search tree, the inorder traversal order of the nodes is the same as the sorted order of the keys. The stru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heap (data Structure)
In computer science, a heap is a Tree (data structure), tree-based data structure that satisfies the heap property: In a ''max heap'', for any given Node (computer science), node C, if P is the parent node of C, then the ''key'' (the ''value'') of P is greater than or equal to the key of C. In a ''min heap'', the key of P is less than or equal to the key of C. The node at the "top" of the heap (with no parents) is called the ''root'' node. The heap is one maximally efficient implementation of an abstract data type called a priority queue, and in fact, priority queues are often referred to as "heaps", regardless of how they may be implemented. In a heap, the highest (or lowest) priority element is always stored at the root. However, a heap is not a sorted structure; it can be regarded as being partially ordered. A heap is a useful data structure when it is necessary to repeatedly remove the object with the highest (or lowest) priority, or when insertions need to be interspersed wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Trees
In computer science, a binary tree is a tree data structure in which each node has at most two children, referred to as the ''left child'' and the ''right child''. That is, it is a ''k''-ary tree with . A recursive definition using set theory is that a binary tree is a triple , where ''L'' and ''R'' are binary trees or the empty set and ''S'' is a singleton (a single–element set) containing the root. From a graph theory perspective, binary trees as defined here are arborescences. A binary tree may thus be also called a bifurcating arborescence, a term which appears in some early programming books before the modern computer science terminology prevailed. It is also possible to interpret a binary tree as an undirected, rather than directed graph, in which case a binary tree is an ordered, rooted tree. Some authors use rooted binary tree instead of ''binary tree'' to emphasize the fact that the tree is rooted, but as defined above, a binary tree is always rooted. In math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]