Zhegalkin Algebra
   HOME





Zhegalkin Algebra
In mathematics, Zhegalkin algebra is a set of Boolean functions defined by the nullary operation taking the value 1, use of the binary operation of conjunction \land, and use of the binary sum operation for modulo 2 \oplus. The constant 0 is introduced as 1 \oplus 1 = 0.Zhegalkin, Ivan Ivanovich (1928). "The arithmetization of symbolic logic" (PDF). Matematicheskii Sbornik. 35 (3–4): 320. Retrieved 12 January 2024.
additional text. The negation operation is introduced by the relation \neg x = x \oplus 1. The disjunction operation follows from the identity x \lor y = x \land y \oplus x \oplus y.Yu. V. Kapitonova, S.L. Krivoj, A. A. Letichevsky. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Functions
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually , or ). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form f:\^k \to \, where \ is known as the Boolean domain and k is a non-negative integer called the arity of the function. In the case where k=0, the function is a constant element of \. A Boolean function with multiple outputs, f:\^k \to \^m with m>1 is a vectorial or ''vector-valued'' Boolean function (an S-box in symmetric cryptography). There are 2^ different Boolean functions with k arguments; equal to the number of different truth tables with 2^k entries. Every k-ary Boolean function can be expressed as a propositional formula in k variables x_1,...,x_k, and two propositional formulas a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Conjunction
In logic, mathematics and linguistics, ''and'' (\wedge) is the Truth function, truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or \times or \cdot in which \wedge is the most modern and widely used. The ''and'' of a set of operands is true if and only if ''all'' of its operands are true, i.e., A \land B is true if and only if A is true and B is true. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English language, English "Conjunction (grammar), and"; * In programming languages, the Short-circuit evaluation, short-circuit and Control flow, control structure; * In set theory, Intersection (set theory), intersection. * In Lattice (order), lattice theory, logical conjunction (Infimum and supremum, greatest lower bound). Notati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exclusive Or
Exclusive or, exclusive disjunction, exclusive alternation, logical non-equivalence, or logical inequality is a logical operator whose negation is the logical biconditional. With two inputs, XOR is true if and only if the inputs differ (one is true, one is false). With multiple inputs, XOR is true if and only if the number of true inputs is odd. It gains the name "exclusive or" because the meaning of "or" is ambiguous when both operands are true. XOR ''excludes'' that case. Some informal ways of describing XOR are "one or the other but not both", "either one or the other", and "A or B, but not A and B". It is symbolized by the prefix operator J Translated as and by the infix operators XOR (, , or ), EOR, EXOR, \dot, \overline, \underline, , \oplus, \nleftrightarrow, and \not\equiv. Definition The truth table of A\nleftrightarrow B shows that it outputs true whenever the inputs differ: Equivalences, elimination, and introduction Exclusive disjunction essentially ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zhegalkin Polynomial
Zhegalkin (also Žegalkin, Gégalkine or Shegalkin) polynomials (), also known as algebraic normal form, are a representation of functions in Boolean algebra. Introduced by the Russian mathematician Ivan Ivanovich Zhegalkin in 1927, they are the polynomial ring over the integers modulo 2. The resulting degeneracies of modular arithmetic result in Zhegalkin polynomials being simpler than ordinary polynomials, requiring neither coefficients nor exponents. Coefficients are redundant because 1 is the only nonzero coefficient. Exponents are redundant because in arithmetic mod 2, ''x''2 = ''x''. Hence a polynomial such as 3''x''2''y''5''z'' is congruent to, and can therefore be rewritten as, ''xyz''. __TOC__ Boolean equivalent Prior to 1927, Boolean algebra had been considered a calculus of logical values with logical operations of conjunction, disjunction, negation, and so on. Zhegalkin showed that all Boolean operations could be written as ordinary numeric polynomials, repres ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Completeness
In Mathematical logic, logic, a functionally complete set of logical connectives or Boolean function, Boolean operators is one that can be used to express all possible truth tables by combining members of the Set (mathematics), set into a Boolean expression.. ("Complete set of logical connectives").. ("[F]unctional completeness of [a] set of logical operators"). A well-known complete set of connectives is . Each of the singleton (mathematics), singleton sets and is functionally complete. However, the set is incomplete, due to its inability to express NOT. A gate (or set of gates) that is functionally complete can also be called a universal gate (or a universal set of gates). In a context of propositional logic, functionally complete sets of connectives are also called (''expressively'') ''adequate''.. (Defines "expressively adequate", shortened to "adequate set of connectives" in a section heading.) From the point of view of digital electronics, functional completeness means t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

XNOR Gate
The XNOR gate (sometimes ENOR, EXNOR, NXOR, XAND and pronounced as exclusive NOR) is a digital logic gate whose function is the logical complement of the exclusive OR ( XOR) gate. It is equivalent to the logical connective (\leftrightarrow) from mathematical logic, also known as the material biconditional. The two-input version implements logical equality, behaving according to the truth table to the right, and hence the gate is sometimes called an "equivalence gate". A high output (1) results if both of the inputs to the gate are the same. If one but not both inputs are high (1), a low output (0) results. The algebraic notation used to represent the XNOR operation is S = A \odot B. The algebraic expressions (A + \overline) \cdot (\overline + B) and A \cdot B + \overline A \cdot \overline B both represent the XNOR gate with inputs ''A'' and ''B''. Symbols There are two symbols for XNOR gates: one with distinctive shape and one with rectangular shape and label. Both symbols ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Equality
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to work." Premise ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Negation
In logic, negation, also called the logical not or logical complement, is an operation (mathematics), operation that takes a Proposition (mathematics), proposition P to another proposition "not P", written \neg P, \mathord P, P^\prime or \overline. It is interpreted intuitively as being true when P is false, and false when P is true. For example, if P is "Spot runs", then "not P" is "Spot does not run". An operand of a negation is called a ''negand'' or ''negatum''. Negation is a unary operation, unary logical connective. It may furthermore be applied not only to propositions, but also to notion (philosophy), notions, truth values, or interpretation (logic), semantic values more generally. In classical logic, negation is normally identified with the truth function that takes ''truth'' to ''falsity'' (and vice versa). In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition P is the proposition whose proofs are the re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]