Zeta Function Regularization
In mathematics and theoretical physics, zeta function regularization is a type of regularization (physics), regularization or summability method that assigns finite values to Divergent series, divergent sums or products, and in particular can be used to define determinants and trace (linear algebra), traces of some self-adjoint operators. The technique is now commonly applied to problems in physics, but has its origins in attempts to give precise meanings to Condition number, ill-conditioned sums appearing in number theory. Definition There are several different summation methods called zeta function regularization for defining the sum of a possibly divergent series One method is to define its zeta regularized sum to be ζ''A''(−1) if this is defined, where the zeta function is defined for large Re(''s'') by : \zeta_A(s) = \frac+\frac +\cdots if this sum converges, and by analytic continuation elsewhere. In the case when ''a''''n'' = ''n'', the zeta function is the o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Path Integral Formulation
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude. This formulation has proven crucial to the subsequent development of theoretical physics, because manifest Lorentz covariance (time and space components of quantities enter equations in the same way) is easier to achieve than in the operator formalism of canonical quantization. Unlike previous methods, the path integral allows one to easily change coordinates between very different canonical descriptions of the same quantum system. Another advantage is that it is in practice easier to guess the correct form of the Lagrangian of a theory, which naturally enters the path integrals (for interactions of a certain type, these ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its development began in the 1920s with the description of interactions between light and electrons, culminating in the first quantum field theory—quantum electrodynamics. A major theoretical obstacle soon followed with the appearance and persistence of various infinities in perturbative calculations, a problem only resolved in the 1950s with the invention of the renormalization procedure. A second major barrier came with QFT's apparent inabili ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and light. Energy is a Conservation law, conserved quantity—the law of conservation of energy states that energy can be Energy transformation, converted in form, but not created or destroyed. The unit of measurement for energy in the International System of Units (SI) is the joule (J). Forms of energy include the kinetic energy of a moving object, the potential energy stored by an object (for instance due to its position in a Classical field theory, field), the elastic energy stored in a solid object, chemical energy associated with chemical reactions, the radiant energy carried by electromagnetic radiation, the internal energy contained within a thermodynamic system, and rest energy associated with an object's rest mass. These are not mutual ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vacuum Expectation Value
In quantum field theory, the vacuum expectation value (VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. One of the most widely used examples of an observable physical effect that results from the vacuum expectation value of an operator is the Casimir effect. This concept is important for working with correlation functions in quantum field theory. In the context of spontaneous symmetry breaking, an operator that has a vanishing expectation value due to symmetry can acquire a nonzero vacuum expectation value during a phase transition. Examples are: *The Higgs field has a vacuum expectation value of 246 GeV. This nonzero value underlies the Higgs mechanism of the Standard Model. This value is given by v = 1/\sqrt = 2M_W/g \approx 246.22\, \rm, where ''MW'' is the mass of the W Boson, G_F^0 the reduced Fermi constant, and the weak isospin coupling, in natural units. I ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Casimir Effect
In quantum field theory, the Casimir effect (or Casimir force) is a physical force (physics), force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of a field (physics), field. The term Casimir pressure is sometimes used when it is described in units of force per unit area. It is named after the Dutch physicist Hendrik Casimir, who predicted the effect for electromagnetism, electromagnetic systems in 1948. In the same year Casimir, together with Dirk Polder, described a similar effect experienced by a neutral atom in the vicinity of a macroscopic interface which is called the Casimir–Polder force. Their result is a generalization of the London dispersion force, London–van der Waals force and includes retarded potential, retardation due to the finite speed of light. The fundamental principles leading to the London–van der Waals force, the Casimir force, and the Casimir–Polder force can be formulated on the same footing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heat Equation
In mathematics and physics (more specifically thermodynamics), the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in many parts of both pure and applied mathematics. Definition Given an open subset of and a subinterval of , one says that a function is a solution of the heat equation if : \frac = \frac + \cdots + \frac, where denotes a general point of the domain. It is typical to refer to as time and as spatial variables, even in abstract contexts where these phrases fail to have their intuitive meaning. The collection of spatial variables is often referred to simply as . For any given value of , the right-hand side of the equation is the Laplace operator, Laplacian of the function . As such, the heat equation is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mellin Transform
In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions. The Mellin transform of a complex-valued function defined on \mathbf R^_+= (0,\infty) is the function \mathcal M f of complex variable s given (where it exists, see Fundamental strip below) by \mathcal\left\(s) = \varphi(s)=\int_0^\infty x^ f(x) \, dx = \int_f(x) x^s \frac. Notice that dx/x is a Haar measure on the multiplicative group \mathbf R^_+ and x\mapsto x^s is a (in general non-unitary) multiplicative character. The inverse transform is \mathcal^\left\(x) = f(x)=\frac \int_^ x^ \varphi(s)\, ds. The notation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Torsion
In mathematics, Reidemeister torsion (or R-torsion, or Reidemeister–Franz torsion) is a topological invariant of manifolds introduced by Kurt Reidemeister for 3-manifolds and generalized to higher dimensions by and . Analytic torsion (or Ray–Singer torsion) is an invariant of Riemannian manifolds defined by as an analytic analogue of Reidemeister torsion. and proved Ray and Singer's conjecture that Reidemeister torsion and analytic torsion are the same for compact Riemannian manifolds. Reidemeister torsion was the first invariant in algebraic topology that could distinguish between closed manifolds which are homotopy equivalent but not homeomorphic, and can thus be seen as the birth of geometric topology as a distinct field. It can be used to classify lens spaces. Reidemeister torsion is closely related to Whitehead torsion; see . It has also given some important motivation to arithmetic topology; see . For more recent work on torsion see the books and . Definition of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Differential Operator
In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real Method of characteristics, characteristic directions. Elliptic operators are typical of potential theory, and they appear frequently in electrostatics and continuum mechanics. Elliptic regularity implies that their solutions tend to be smooth functions (if the coefficients in the operator are smooth). Steady-state solutions to Hyperbolic partial differential equation, hyperbolic and Parabolic partial differential equation, parabolic equations generally solve elliptic equations. Definitions Let L be a Differential operator, linear differential operator of order ''m'' on a domain \Omega in R''n'' given by Lu = \sum_ a_\alpha(x)\partial^ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minakshisundaram–Pleijel Zeta Function
The Minakshisundaram–Pleijel zeta function is a zeta function encoding the eigenvalues of the Laplacian of a compact Riemannian manifold. It was introduced by . The case of a compact region of the plane was treated earlier by . Definition For a compact Riemannian manifold ''M'' of dimension ''N'' with eigenvalues \lambda_1, \lambda_2, \ldots of the Laplace–Beltrami operator \Delta, the zeta function is given for \operatorname(s) sufficiently large by : Z(s) = \mbox(\Delta^) = \sum_^ \vert \lambda_ \vert^. (where if an eigenvalue is zero it is omitted in the sum). The manifold may have a boundary, in which case one has to prescribe suitable boundary conditions, such as Dirichlet or Neumann boundary conditions. More generally one can define : Z(P, Q, s) = \sum_^ \frac for ''P'' and ''Q'' on the manifold, where the f_n are normalized eigenfunctions. This can be analytically continued to a meromorphic function of ''s'' for all complex ''s'', and is holomorphic for P\ne Q ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |