HOME





Witten Conjecture
In algebraic geometry, the Witten conjecture is a conjecture about intersection numbers of stable classes on the moduli space of curves, introduced by Edward Witten in the paper , and generalized in . Witten's original conjecture was proved by Maxim Kontsevich in the paper . Witten's motivation for the conjecture was that two different models of 2-dimensional quantum gravity should have the same partition function. The partition function for one of these models can be described in terms of intersection numbers on the moduli stack of algebraic curves, and the partition function for the other is the logarithm of the τ-function of the KdV hierarchy. Identifying these partition functions gives Witten's conjecture that a certain generating function formed from intersection numbers should satisfy the differential equations of the KdV hierarchy. Statement Suppose that ''M''''g'',''n'' is the moduli stack of compact Riemann surfaces of genus ''g'' with ''n'' distinct marked points ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. Examples of Riemann surfaces include Graph of a function, graphs of Multivalued function, multivalued functions such as √''z'' or log(''z''), e.g. the subset of pairs with . Every Riemann surface is a Surface (topology), surface: a two-dimensional real manifold, but it contains more structure (specifically a Complex Manifold, complex structure). Conversely, a two-dimensional real manifold can be turned into a Riemann surface (usually in several inequivalent ways) if and only if it is orientable and Metrizabl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moduli Theory
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Bernhard Riemann first used the term "moduli" in 1857. Motivation Moduli spaces are spaces of solutions of geometric classification problems. That is, the points of a moduli space correspond to solutions of geometric probl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of The American Mathematical Society
The ''Journal of the American Mathematical Society'' (''JAMS''), is a quarterly peer-reviewed mathematical journal published by the American Mathematical Society. It was established in January 1988. Abstracting and indexing This journal is abstracted and indexed in:Indexing and archiving notes
2011. American Mathematical Society. * Mathematical Reviews * Zentralblatt MATH * Science Citation Index * ISI Alerting Services * CompuMath Citation Index *
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Virasoro Conjecture
In algebraic geometry, the Virasoro conjecture states that a certain generating function encoding Gromov–Witten invariants of a smooth projective variety is fixed by an action of half of the Virasoro algebra. The Virasoro conjecture is named after theoretical physicist Miguel Ángel Virasoro. proposed the Virasoro conjecture as a generalization of Witten's conjecture. gave a survey of the Virasoro conjecture. The proof of the genus 0 Virasoro conjecture for all smooth projective varieties (or more generally, compact symplectic manifolds) was first given by Xiaobo Liu and Gang Tian Tian Gang (; born November 24, 1958) is a Chinese mathematician. He is a professor of mathematics at Peking University and Higgins Professor Emeritus at Princeton University. He is known for contributions to the mathematical fields of Kähler g ... (1998). References * * * Algebraic geometry Conjectures Unsolved problems in geometry {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integrable Systems
In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, that its motion is confined to a submanifold of much smaller dimensionality than that of its phase space. Three features are often referred to as characterizing integrable systems: * the existence of a ''maximal'' set of conserved quantities (the usual defining property of complete integrability) * the existence of algebraic invariants, having a basis in algebraic geometry (a property known sometimes as algebraic integrability) * the explicit determination of solutions in an explicit functional form (not an intrinsic property, but something often referred to as solvability) Integrable systems may be seen as very different in qualitative character from more ''generic'' dynamical systems, which are more typically chaotic syste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virasoro Algebra
In mathematics, the Virasoro algebra is a complex Lie algebra and the unique nontrivial central extension of the Witt algebra. It is widely used in two-dimensional conformal field theory and in string theory. It is named after Miguel Ángel Virasoro. Structure The Virasoro algebra is spanned by generators for and the central charge . These generators satisfy ,L_n0 and The factor of \frac is merely a matter of convention. For a derivation of the algebra as the unique central extension of the Witt algebra, see derivation of the Virasoro algebra or Schottenloher, Thm. 5.1, pp. 79. The Virasoro algebra has a presentation in terms of two generators (e.g. 3 and −2) and six relations. The generators L_ are called annihilation modes, while L_ are creation modes. A basis of creation generators of the Virasoro algebra's universal enveloping algebra is the set : \mathcal = \Big\_ For L\in \mathcal, let , L, = \sum_^k n_i, then _0,L= , L, L. Representation theory In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chern Class
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, and Gromov–Witten invariants. Chern classes were introduced by . Geometric approach Basic idea and motivation Chern classes are characteristic classes. They are topological invariants associated with vector bundles on a smooth manifold. The question of whether two ostensibly different vector bundles are the same can be quite hard to answer. The Chern classes provide a simple test: if the Chern classes of a pair of vector bundles do not agree, then the vector bundles are different. The converse, however, is not true. In topology, differential geometry, and algebraic geometry, it is often important to count how many linearly independent sect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intersection Number
In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangent, tangency. One needs a definition of intersection number in order to state results like Bézout's theorem. The intersection number is obvious in certain cases, such as the intersection of the ''x''- and ''y''-axes in a plane, which should be one. The complexity enters when calculating intersections at points of tangency, and intersections which are not just points, but have higher dimension. For example, if a plane is tangent to a surface along a line, the intersection number along the line should be at least two. These questions are discussed systematically in intersection theory. Definition for Riemann surfaces Let ''X'' be a Riemann surface. Then the intersection number of two closed curves on ''X'' has a simple definition in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenization of a polynomial, homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse function, inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. If the defining polynomial of a plane algebraic curve is irreducible polynomial, irreducible, then one has an ''irreducible plane algebraic curve''. Otherwise, the algebraic curve is the union of one or several irreducible curves, called its ''Irreduc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]