HOME
*





Vinogradov's Mean-value Theorem
In mathematics, Vinogradov's mean value theorem is an estimate for the number of equal sums of powers. It is an important inequality in analytic number theory, named for I. M. Vinogradov. More specifically, let J_(X) count the number of solutions to the system of k simultaneous Diophantine equations in 2s variables given by :x_1^j+x_2^j+\cdots+x_s^j=y_1^j+y_2^j+\cdots+y_s^j\quad (1\le j\le k) with :1\le x_i,y_i\le X, (1\le i\le s). That is, it counts the number of equal sums of powers with equal numbers of terms (s) and equal exponents (j), up to kth powers and up to powers of X. An alternative analytic expression for J_(X) is :J_(X)=\int_, f_k(\mathbf\alpha;X), ^d\mathbf\alpha where :f_k(\mathbf\alpha;X)=\sum_\exp(2\pi i(\alpha_1x+\cdots+\alpha_kx^k)). Vinogradov's mean-value theorem gives an upper bound on the value of J_(X). A strong estimate for J_(X) is an important part of the Hardy-Littlewood method for attacking Waring's problem and also for demonstrating a zero free region ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sums Of Powers
In mathematics and statistics, sums of powers occur in a number of contexts: *Sum of squares (other), Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities. *Faulhaber's formula expresses 1^k + 2^k + 3^k + \cdots + n^k as a polynomial in ''n'', or alternatively Bernoulli_polynomials#Sums_of_pth_powers, in term of a Bernoulli polynomial. *Fermat's right triangle theorem states that there is no solution in positive integers for a^2=b^4+c^4 and a^4=b^4+c^2. *Fermat's Last Theorem states that x^k+y^k=z^k is impossible in positive integers with ''k''>2. *The equation of a superellipse is , x/a, ^k+, y/b, ^k=1. The squircle is the case k=4, a=b. *Euler's sum of powers conjecture (disproved) concerns situations in which the sum of ''n' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Number Theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet ''L''-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem). Branches of analytic number theory Analytic number theory can be split up into two major parts, divided more by the type of problems they attempt to solve than fundamental differences in technique. * Multiplicative number theory deals with the distribution of the prime numbers, such as estimating the number of primes in an interval, and includes the prime number theorem and Dirichlet's theorem on primes in arithmetic progressions. * Additive n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diophantine Equations
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations. As such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called '' Diophantine geometry''. The word ''Diophantine'' refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematicians to introduce symbolism into algebra. The mathematical study of Diophantine pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Upper Bound
In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is greater than or equal to every element of . Dually, a lower bound or minorant of is defined to be an element of that is less than or equal to every element of . A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds. Examples For example, is a lower bound for the set (as a subset of the integers or of the real numbers, etc.), and so is . On the other hand, is not a lower bound for since it is not smaller than every element in . The set has as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that . Every subset of the natural numbers has a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hardy-Littlewood Method
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime'' is used for a pair of twin primes; an alternative name for this is prime twin or prime pair. Twin primes become increasingly rare as one examines larger ranges, in keeping with the general tendency of gaps between adjacent primes to become larger as the numbers themselves get larger. However, it is unknown whether there are infinitely many twin primes (the so-called twin prime conjecture) or if there is a largest pair. The breakthrough work of Yitang Zhang in 2013, as well as work by James Maynard, Terence Tao and others, has made substantial progress towards proving that there are infinitely many twin primes, but at present this remains unsolved. Properties Usually the pair (2, 3) is not considered to be a pair of twin primes. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Waring's Problem
In number theory, Waring's problem asks whether each natural number ''k'' has an associated positive integer ''s'' such that every natural number is the sum of at most ''s'' natural numbers raised to the power ''k''. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers. Waring's problem was proposed in 1770 by Edward Waring, after whom it is named. Its affirmative answer, known as the Hilbert–Waring theorem, was provided by Hilbert in 1909. Waring's problem has its own Mathematics Subject Classification, 11P05, "Waring's problem and variants". Relationship with Lagrange's four-square theorem Long before Waring posed his problem, Diophantus had asked whether every positive integer could be represented as the sum of four perfect squares greater than or equal to zero. This question later became known as Bachet's conjecture, after the 1621 translation of Diophantus by Claude Gaspard Bachet de Méziriac, and it was solved by Joseph-Louis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Zeta-function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for \operatorname(s) > 1 and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory, and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century. Bernhard Riemann's 1859 article "On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to a complex variable, proved its meromorphic continuation and functional equation, and established a relation between its zeros and the distribution of prime numbers. This paper also contained the Riemann hypothesis, a conjecture about the distribution of complex zeros of the Riemann zeta function that is cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Critical Strip
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for \operatorname(s) > 1 and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory, and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century. Bernhard Riemann's 1859 article " On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to a complex variable, proved its meromorphic continuation and functional equation, and established a relation between its zeros and the distribution of prime numbers. This paper also contained the Riemann hypothesis, a conjecture about the distribution of complex zeros of the Riemann zeta function that is cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lillian Pierce
Lillian Beatrix Pierce is a mathematician whose research connects number theory with harmonic analysis. She is a professor of mathematics at Duke University. Early life and education Pierce was home-schooled in Fallbrook, California and began playing the violin at age four. By age 11 she began performing professionally as a violinist. As a teenager, she also started taking classes at a local community college, accumulating so many units that some of the universities she applied to refused to consider her for freshman admission. She entered Princeton University majoring in mathematics but intending to pursue an MD–PhD program; under the influence of faculty mentor and undergraduate thesis supervisor Elias M. Stein, her interests shifted towards pure mathematics. As an undergraduate, she also became an intern at the National Security Agency. She was Princeton's 2002 valedictorian and became a Rhodes Scholar, repeating two accomplishments of her brother Niles Pierce from nine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean Bourgain
Jean, Baron Bourgain (; – ) was a Belgian mathematician. He was awarded the Fields Medal in 1994 in recognition of his work on several core topics of mathematical analysis such as the geometry of Banach spaces, harmonic analysis, ergodic theory and nonlinear partial differential equations from mathematical physics. Biography Bourgain received his PhD from the Vrije Universiteit Brussel in 1977. He was a faculty member at the University of Illinois, Urbana-Champaign and, from 1985 until 1995, professor at Institut des Hautes Études Scientifiques at Bures-sur-Yvette in France, at the Institute for Advanced Study in Princeton, New Jersey from 1994 until 2018. He was an editor for the ''Annals of Mathematics''. From 2012 to 2014, he was a visiting scholar at UC Berkeley. His research work included several areas of mathematical analysis such as the geometry of Banach spaces, harmonic analysis, analytic number theory, combinatorics, ergodic theory, partial differential equa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Larry Guth
Lawrence David Guth (born 1977) is a professor of mathematics at the Massachusetts Institute of Technology. Education and career Guth graduated from Yale in 2000, with BS in mathematics. In 2005, he got his PhD in mathematics from the Massachusetts Institute of Technology, where he studied geometry of objects with random shapes under the supervision of Tomasz Mrowka. After MIT, Guth went to Stanford as a postdoc, and later to the University of Toronto as an Assistant Professor. In 2011, New York University's Courant Institute of Mathematical Sciences hired Guth as a professor, listing his areas of interest as "metric geometry, harmonic analysis, and geometric combinatorics." In 2012, Guth moved to MIT, where he is Claude Shannon Professor of Mathematics. Research In his research, Guth has strengthened Gromov's systolic inequality for essential manifolds and, along with Nets Katz, found a solution to the Erdős distinct distances problem. His wide-ranging interests include ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Acta Math
''Acta Mathematica'' is a peer-reviewed open-access scientific journal covering research in all fields of mathematics. According to Cédric Villani, this journal is "considered by many to be the most prestigious of all mathematical research journals".. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 4.273, ranking it 5th out of 330 journals in the category "Mathematics". Publication history The journal was established by Gösta Mittag-Leffler in 1882 and is published by Institut Mittag-Leffler, a research institute for mathematics belonging to the Royal Swedish Academy of Sciences. The journal was printed and distributed by Springer from 2006 to 2016. Since 2017, Acta Mathematica has been published electronically and in print by International Press. Its electronic version is open access without publishing fees. Poincaré episode The journal's "most famous episode" (according to Villani) concerns Henri Poincaré, who won a prize offered in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]