HOME





Van Der Waerden's Theorem
Van der Waerden's theorem is a theorem in the branch of mathematics called Ramsey theory. Van der Waerden's theorem states that for any given positive integers ''r'' and ''k'', there is some number ''N'' such that if the integers are colored, each with one of ''r'' different colors, then there are at least ''k'' integers in arithmetic progression whose elements are of the same color. The least such ''N'' is the Van der Waerden number ''W''(''r'', ''k''), named after the Dutch mathematician B. L. van der Waerden. This was conjectured by Pierre Joseph Henry Baudet in 1921. Waerden heard of it in 1926 and published his proof in 1927, titled ''Beweis einer Baudetschen Vermutung roof of Baudet's conjecture'. Example For example, when ''r'' = 2, you have two colors, say and . ''W''(2, 3) is bigger than 8, because you can color the integers from like this: and no three integers of the same color form an arithmetic progression. But you can't add a ninth integer to the end w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hales–Jewett Theorem
In mathematics, the Hales–Jewett theorem is a fundamental combinatorial result of Ramsey theory named after Alfred W. Hales and Robert I. Jewett, concerning the degree to which high-dimensional objects must necessarily exhibit some combinatorial structure. An informal geometric statement of the theorem is that for any positive integers ''n'' and ''c'' there is a number ''H'' such that if the cells of a ''H''-dimensional ''n''×''n''×''n''×...×''n'' cube are colored with ''c'' colors, there must be one row, column, or certain diagonal (more details below) of length ''n'' all of whose cells are the same color. In other words, assuming ''n'' and ''c'' are fixed, the higher-dimensional, multi-player, ''n''-in-a-row generalization of a game of tic-tac-toe with ''c'' players cannot end in a draw, no matter how large ''n'' is, no matter how many people ''c'' are playing, and no matter which player plays each turn, provided only that it is played on a board of sufficiently high dimens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rado's Theorem (Ramsey Theory)
Rado's theorem is a theorem from the branch of mathematics known as Ramsey theory. It is named for the German mathematician Richard Rado. It was proved in his thesis, ''Studien zur Kombinatorik''. Statement Let A \mathbf = \mathbf be a system of linear equations, where A is a matrix with integer entries. This system is said to be r''-regular'' if, for every r-coloring of the natural numbers 1, 2, 3, ..., the system has a monochromatic solution. A system is ''regular'' if it is ''r-regular'' for all ''r'' ≥ 1. Rado's theorem states that a system A \mathbf = \mathbf is regular if and only if the matrix ''A'' satisfies the ''columns condition''. Let ''ci'' denote the ''i''-th column of ''A''. The matrix ''A'' satisfies the columns condition provided that there exists a partition ''C''1, ''C''2, ..., ''C''''n'' of the column indices such that if s_i = \Sigma_c_j, then # ''s''1 = 0 # for all ''i'' ≥ 2, ''si'' can be written as a ration ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hales–Jewett Theorem
In mathematics, the Hales–Jewett theorem is a fundamental combinatorial result of Ramsey theory named after Alfred W. Hales and Robert I. Jewett, concerning the degree to which high-dimensional objects must necessarily exhibit some combinatorial structure. An informal geometric statement of the theorem is that for any positive integers ''n'' and ''c'' there is a number ''H'' such that if the cells of a ''H''-dimensional ''n''×''n''×''n''×...×''n'' cube are colored with ''c'' colors, there must be one row, column, or certain diagonal (more details below) of length ''n'' all of whose cells are the same color. In other words, assuming ''n'' and ''c'' are fixed, the higher-dimensional, multi-player, ''n''-in-a-row generalization of a game of tic-tac-toe with ''c'' players cannot end in a draw, no matter how large ''n'' is, no matter how many people ''c'' are playing, and no matter which player plays each turn, provided only that it is played on a board of sufficiently high dimens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Van Der Waerden Game
A van is a type of road vehicle used for transporting goods or people. There is some variation in the scope of the word across the different English-speaking countries. The smallest vans, microvans, are used for transporting either goods or people in tiny quantities. Mini MPVs, compact MPVs, and MPVs are all small vans usually used for transporting people in small quantities. Larger vans with passenger seats are used for institutional purposes, such as transporting students. Larger vans with only front seats are often used for business purposes, to carry goods and equipment. Specially equipped vans are used by television stations as mobile studios. Postal services and courier companies use large step vans to deliver packages. Word origin and usage Van meaning a type of vehicle arose as a contraction of the word caravan. The earliest records of a van as a vehicle in English are in the mid-19th century, meaning a covered wagon for transporting goods; the earliest reported rec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. The journal is devoted to shorter research articles. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases:Indexing and archiving notes
2011. American Mathematical Society. *
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Generalized Arithmetic Progression
In mathematics, a generalized arithmetic progression (or multiple arithmetic progression) is a generalization of an arithmetic progression equipped with multiple common differences – whereas an arithmetic progression is generated by a single common difference, a generalized arithmetic progression can be generated by multiple common differences. For example, the sequence 17, 20, 22, 23, 25, 26, 27, 28, 29, \dots is not an arithmetic progression, but is instead generated by starting with 17 and adding either 3 ''or'' 5, thus allowing multiple common differences to generate it. A semilinear set generalizes this idea to multiple dimensions – it is a set of vectors of integers, rather than a set of integers. Finite generalized arithmetic progression A finite generalized arithmetic progression, or sometimes just generalized arithmetic progression (GAP), of dimension ''d'' is defined to be a set of the form :\ where x_0,x_1,\dots,x_d,L_1,\dots,L_d\in\mathbb. The product L_1L_2\cdot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Induction
Mathematical induction is a method for mathematical proof, proving that a statement P(n) is true for every natural number n, that is, that the infinitely many cases P(0), P(1), P(2), P(3), \dots  all hold. This is done by first proving a simple case, then also showing that if we assume the claim is true for a given case, then the next case is also true. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder: A proof by induction consists of two cases. The first, the base case, proves the statement for n = 0 without assuming any knowledge of other cases. The second case, the induction step, proves that ''if'' the statement holds for any given case n = k, ''then'' it must also hold for the next case n = k + 1. These two steps establish that the statement holds for every natural number n. The base case does not necessarily begin with n = 0, but often with n = 1, and possibly with any fixed natural number n = N, establishing the trut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pigeonhole Principle
In mathematics, the pigeonhole principle states that if items are put into containers, with , then at least one container must contain more than one item. For example, of three gloves, at least two must be right-handed or at least two must be left-handed, because there are three objects but only two categories of handedness to put them into. This seemingly obvious statement, a type of combinatorics, counting argument, can be used to demonstrate possibly unexpected results. For example, given that the Demographics of London, population of London is more than one unit greater than the maximum number of hairs that can be on a human's head, the principle requires that there must be at least two people in London who have the same number of hairs on their heads. Although the pigeonhole principle appears as early as 1624 in a book attributed to Jean Leurechon, it is commonly called Dirichlet's box principle or Dirichlet's drawer principle after an 1834 treatment of the principle by Pet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wiley (publisher)
John Wiley & Sons, Inc., commonly known as Wiley (), is an American multinational publishing company that focuses on academic publishing and instructional materials. The company was founded in 1807 and produces books, journals, and encyclopedias, in print and electronically, as well as online products and services, training materials, and educational materials for undergraduate, graduate, and continuing education students. History The company was established in 1807 when Charles Wiley opened a print shop in Manhattan. The company was the publisher of 19th century American literary figures like James Fenimore Cooper, Washington Irving, Herman Melville, and Edgar Allan Poe, as well as of legal, religious, and other non-fiction titles. The firm took its current name in 1865. Wiley later shifted its focus to scientific, technical, and engineering subject areas, abandoning its literary interests. Wiley's son John (born in Flatbush, New York, October 4, 1808; died in East ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joel Spencer
Joel Spencer (born April 20, 1946) is an American mathematician. He is a combinatorialist who has worked on probabilistic methods in combinatorics and on Ramsey theory. He received his doctorate from Harvard University in 1970, under the supervision of Andrew Gleason. He is currently () a professor at the Courant Institute of Mathematical Sciences of New York University. Spencer's work was heavily influenced by Paul Erdős, with whom he coauthored many papers (giving him an Erdős number of 1). In 1963, while studying at the Massachusetts Institute of Technology, Spencer became a Putnam Fellow. In 1984, Spencer received a Lester R. Ford Award. He was an Erdős Lecturer at Hebrew University of Jerusalem in 2001. In 2012, he became a fellow of the American Mathematical Society. He was elected as a fellow of the Society for Industrial and Applied Mathematics in 2017, "for contributions to discrete mathematics and theory of computing, particularly random graphs and networks, Ramsey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Saharon Shelah
Saharon Shelah (; , ; born July 3, 1945) is an Israeli mathematician. He is a professor of mathematics at the Hebrew University of Jerusalem and Rutgers University in New Jersey. Biography Shelah was born in Jerusalem on July 3, 1945. He is the son of the Hebrew poet and Canaanist political activist Yonatan Ratosh. He received his PhD for his work on stable theories in 1969 from the Hebrew University. Shelah is married to Yael, and has three children. His brother, magistrate judge Hamman Shelah was murdered along with his wife and daughter by an Egyptian soldier in the Ras Burqa massacre in 1985. Shelah planned to be a scientist while at primary school, but initially was attracted to physics and biology, not mathematics. Later he found mathematical beauty in studying geometry: He said, "But when I reached the ninth grade I began studying geometry and my eyes opened to that beauty—a system of demonstration and theorems based on a very small number of axioms which impress ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]