HOME





Toronto Function
In mathematics, the Toronto function ''T''(''m'',''n'',''r'') is a modification of the confluent hypergeometric function In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular s ... defined by , Weisstein, as :T(m,n,r)=r^e^\frac_1F_1(m+;n+1;r^2). :Later, Heatley (1964) recomputed to 12 decimals the table of the M(R)-function, and gave some corrections of the original tables. The table was also extended from x = 4 to x = 16 (Heatley, 1965). An example of the Toronto function has appeared in a study on the theory of turbulence (Heatley, 1965). References *{{Citation , last1=Heatley , first1=A. H. , title=A short table of the Toronto function , mr=0010055 , year=1943 , journal=Trans. Roy. Soc. Canada Sect. III. , volume=37 , pages=13–29 *Heatley, A. H. (1964), "A short table of the Toron ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Confluent Hypergeometric Function
In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term ''confluent'' refers to the merging of singular points of families of differential equations; ''confluere'' is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions: * Kummer's (confluent hypergeometric) function , introduced by , is a solution to Kummer's differential equation. This is also known as the confluent hypergeometric function of the first kind. There is a different and unrelated Kummer's function bearing the same name. * Tricomi's (confluent hypergeometric) function introduced by , sometimes denoted by , is another solution to Kummer's equation. This is also known as the confluent hypergeometric function of the second kind. * Whittaker functions (for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]