Tonelli–Hobson Test
   HOME





Tonelli–Hobson Test
In mathematics, the Tonelli–Hobson test gives sufficient criteria for a function ''ƒ'' on R2 to be an integrable function. It is often used to establish that Fubini's theorem may be applied to ''ƒ''. It is named for Leonida Tonelli and E. W. Hobson. More precisely, the Tonelli–Hobson test states that if ''ƒ'' is a real-valued measurable function on R2, and either of the two iterated integral In multivariable calculus, an iterated integral is the result of applying integrals to a function of more than one variable (for example f(x,y) or f(x,y,z)) in such a way that each of the integrals considers some of the variables as given consta ...s :\int_\mathbb\left(\int_\mathbb, f(x,y), \,dx\right)\, dy or :\int_\mathbb\left(\int_\mathbb, f(x,y), \,dy\right)\, dx is finite, then ''ƒ'' is Lebesgue-integrable on R2. References Integral calculus Theorems in mathematical analysis {{mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integrable Function
In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus,Integral calculus is a very well established mathematical discipline for which there are many sources. See and , for example. the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide variety of scientific fields thereafter. A definite integral computes the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative. Integrals also refer to the concept of an ''antiderivative'', a function whose derivat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fubini's Theorem
In mathematical analysis, Fubini's theorem characterizes the conditions under which it is possible to compute a double integral by using an iterated integral. It was introduced by Guido Fubini in 1907. The theorem states that if a function is Lebesgue integrable on a rectangle X\times Y, then one can evaluate the double integral as an iterated integral:\, \iint\limits_ f(x,y)\,\text(x,y) = \int_X\left(\int_Y f(x,y)\,\texty\right)\textx=\int_Y\left(\int_X f(x,y) \, \textx \right) \texty. This formula is generally not true for the Riemann integral, but it is true if the function is continuous on the rectangle. In multivariable calculus, this weaker result is sometimes also called Fubini's theorem, although it was already known by Leonhard Euler. Tonelli's theorem, introduced by Leonida Tonelli in 1909, is similar but is applied to a non-negative measurable function rather than to an integrable function over its domain. The Fubini and Tonelli theorems are usually combined and for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leonida Tonelli
Leonida Tonelli (19 April 1885 – 12 March 1946) was an Italian people, Italian mathematician, noted for proving Fubini's theorem#Tonelli's theorem for non-negative measurable functions, Tonelli's theorem, a variation of Fubini's theorem, and for introducing Semicontinuity, semicontinuity methods as a common tool for the direct method in the calculus of variations. Education Tonelli graduated from the University of Bologna in 1907; his Ph.D. thesis was written under the direction of Cesare Arzelà. Work Selected publications * , 1900 * . Zanichelli, Bologna, vol. 1: 1922, vol. 2: 1923 * * . Zanichelli, Bologna 1928 See also * Calculus of variations * Fourier series * Lebesgue integral * Mathematical analysis Notes References Biographical and general references * . The "''Yearbook''" of the renowned Italian scientific institution includes a historical sketch of its history, the list of all past and present members as well as a wealth of information about its academic an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real-valued Function
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain. Real-valued functions of a real variable (commonly called ''real functions'') and real-valued functions of several real variables are the main object of study of calculus and, more generally, real analysis. In particular, many function spaces consist of real-valued functions. Algebraic structure Let (X,) be the set of all functions from a set to real numbers \mathbb R. Because \mathbb R is a field, (X,) may be turned into a vector space and a commutative algebra over the reals with the following operations: *f+g: x \mapsto f(x) + g(x) – vector addition *\mathbf: x \mapsto 0 – additive identity *c f: x \mapsto c f(x),\quad c \in \mathbb R – scalar multiplication *f g: x \mapsto f(x)g(x) – pointwise multiplication These operations extend to partial functions from to \mathbb R, with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Measurable Function
In mathematics, and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable. Formal definition Let (X,\Sigma) and (Y,\Tau) be measurable spaces, meaning that X and Y are sets equipped with respective \sigma-algebras \Sigma and \Tau. A function f:X\to Y is said to be measurable if for every E\in \Tau the pre-image of E under f is in \Sigma; that is, for all E \in \Tau f^(E) := \ \in \Sigma. That is, \sigma (f)\subseteq\Sigma, where \sigma (f) is the σ-algeb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iterated Integral
In multivariable calculus, an iterated integral is the result of applying integrals to a function of more than one variable (for example f(x,y) or f(x,y,z)) in such a way that each of the integrals considers some of the variables as given constants. For example, the function f(x,y), if y is considered a given parameter, can be integrated with respect to x, \int f(x,y)\,dx. The result is a function of y and therefore its integral can be considered. If this is done, the result is the iterated integral :\int\left(\int f(x,y)\,dx\right)\,dy. It is key for the notion of iterated integrals that this is different, in principle, from the multiple integral :\iint f(x,y)\,dx\,dy. In general, although these two can be different, Fubini's theorem In mathematical analysis, Fubini's theorem characterizes the conditions under which it is possible to compute a double integral by using an iterated integral. It was introduced by Guido Fubini in 1907. The theorem states that if a function is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue-integrable
In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, is one way to make this concept rigorous and to extend it to more general functions. The Lebesgue integral is more general than the Riemann integral, which it largely replaced in mathematical analysis since the first half of the 20th century. It can accommodate functions with discontinuities arising in many applications that are pathological from the perspective of the Riemann integral. The Lebesgue integral also has generally better analytical properties. For instance, under mild conditions, it is possible to exchange limits and Lebesgue integration, while the conditions for doing this with a Riemann integral are comparatively baroque. Furthermore, the Lebesgue integral can be generalized in a straightforward way to more general ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integral Calculus
In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus,Integral calculus is a very well established mathematical discipline for which there are many sources. See and , for example. the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide variety of scientific fields thereafter. A definite integral computes the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative. Integrals also refer to the concept of an ''antiderivative'', a function whose der ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]