HOME





Tits Metric
In mathematics, the Tits metric is a metric defined on the ideal boundary of an Hadamard space (also called a complete CAT(0) space). It is named after Jacques Tits. Ideal boundary of an Hadamard space Let (''X'', ''d'') be an Hadamard space. Two geodesic rays ''c''1, ''c''2 : , ∞→ ''X'' are called asymptotic if they stay within a certain distance when traveling, i.e. :\sup_ d(c_1(t), c_2(t)) < \infty. Equivalently, the between the two rays is finite. The asymptotic property defines an on the set of geodesic rays, and the set of equivalence classes is called the ideal boundary ∂''X'' of ''X''. An equivalence class of geodesic rays is called a boundary point of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metric (mathematics)
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are a general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hadamard Space
In geometry, an Hadamard space, named after Jacques Hadamard, is a non-linear generalization of a Hilbert space. In the literature they are also equivalently defined as complete CAT(0) spaces. A Hadamard space is defined to be a nonempty complete metric space such that, given any points x and y, there exists a point m such that for every point z, d(z, m)^2 + \leq . The point m is then the midpoint of x and y: d(x, m) = d(y, m) = d(x, y)/2. In a Hilbert space, the above inequality is equality (with m = (x+y)/2), and in general an Hadamard space is said to be if the above inequality is equality. A flat Hadamard space is isomorphic to a closed convex subset of a Hilbert space. In particular, a normed space is an Hadamard space if and only if it is a Hilbert space. The geometry of Hadamard spaces resembles that of Hilbert spaces, making it a natural setting for the study of rigidity theorems. In a Hadamard space, any two points can be joined by a unique geodesic between them; in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Metric Space
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. \sqrt is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the ''completion'' of a given space, as explained below. Definition Cauchy sequence A sequence x_1, x_2, x_3, \ldots of elements from X of a metric space (X, d) is called Cauchy if for every positive real number r > 0 there is a positive integer N such that for all positive integers m, n > N, d(x_m, x_n) < r. Complete space A metric space (X, d) is complete if any of the following equivalent conditions are satisfied: #Every Cauchy seq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CAT(0) Space
In mathematics, a \mathbf(k) space, where k is a real number, is a specific type of metric space. Intuitively, triangles in a \operatorname(k) space (with k0. Let (X,d) be a geodesic metric space, i.e. a metric space for which every two points x,y\in X can be joined by a geodesic segment, an arc length parametrized continuous curve \gamma\colon ,b\to X,\ \gamma(a) = x,\ \gamma(b) = y, whose length :L(\gamma) = \sup \left\ is precisely d(x,y). Let \Delta be a triangle in X with geodesic segments as its sides. \Delta is said to satisfy the \mathbf(k) inequality if there is a comparison triangle \Delta' in the model space M_k, with sides of the same length as the sides of \Delta, such that distances between points on \Delta are less than or equal to the distances between corresponding points on \Delta'. The geodesic metric space (X,d) is said to be a \mathbf(k) space if every geodesic triangle \Delta in X with perimeter less than 2D_k satisfies the \operatorname(k) inequality. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacques Tits
Jacques Tits () (12 August 1930 – 5 December 2021) was a Belgian-born French mathematician who worked on group theory and incidence geometry. He introduced Tits buildings, the Tits alternative, the Tits group, and the Tits metric. Early life and education Tits was born in Uccle, Belgium to Léon Tits, a professor, and Lousia André. Jacques attended the Athénée of Uccle and the Free University of Brussels (1834–1969), Free University of Brussels. His thesis advisor was , and Tits graduated with his doctorate in 1950 with the dissertation ''Généralisation des groupes projectifs basés sur la notion de transitivité''. Career Tits held professorships at the Free University of Brussels (now split into the Université libre de Bruxelles and the Vrije Universiteit Brussel) (1962–1964), the University of Bonn (1964–1974) and the Collège de France in Paris, until becoming emeritus in 2000. He changed his citizenship to French in 1974 in order to teach at the Collège de F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geodesic
In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a " straight line". The noun '' geodesic'' and the adjective '' geodetic'' come from ''geodesy'', the science of measuring the size and shape of Earth, though many of the underlying principles can be applied to any ellipsoidal geometry. In the original sense, a geodesic was the shortest route between two points on the Earth's surface. For a spherical Earth, it is a segment of a great circle (see also great-circle distance). The term has since been generalized to more abstract mathematical spaces; for example, in graph theory, one might consider a geodesic between two vertices/nodes of a graph. In a Riemannian manifold or submanifold, geodesics are characterised by the property of havi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Distance
In mathematics, the Hausdorff distance, or Hausdorff metric, also called Pompeiu–Hausdorff distance, measures how far two subsets of a metric space are from each other. It turns the set of non-empty set, non-empty compact space, compact subsets of a metric space into a metric space in its own right. It is named after Felix Hausdorff and Dimitrie Pompeiu. Informally, two sets are close in the Hausdorff distance if every point of either set is close to some point of the other set. The Hausdorff distance is the longest distance someone can be forced to travel by an adversary who chooses a point in one of the two sets, from where they then must travel to the other set. In other words, it is the greatest of all the distances from a point in one set to the closest point in the other set. This distance was first introduced by Hausdorff in his book ''Grundzüge der Mengenlehre'', first published in 1914, although a very close relative appeared in the doctoral thesis of Maurice René Fré ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive). Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definitions A binary relation \,\si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexandrov Space
In geometry, Alexandrov spaces with curvature ≥ ''k'' form a generalization of Riemannian manifolds with sectional curvature ≥ ''k'', where ''k'' is some real number. By definition, these spaces are locally compact complete length spaces where the lower curvature bound is defined via comparison of geodesic triangles in the space to geodesic triangles in standard constant-curvature Riemannian surfaces. One can show that the Hausdorff dimension of an Alexandrov space with curvature ≥ ''k'' is either a non-negative integer or infinite. One can define a notion of "angle" (see Comparison triangle#Alexandrov angles) and "tangent cone" in these spaces. Alexandrov spaces with curvature ≥ ''k'' are important as they form the limits (in the Gromov–Hausdorff metric) of sequences of Riemannian manifolds with sectional curvature ≥ ''k'', as described by Gromov's compactness theorem. Alexandrov spaces with curvature ≥ ''k'' were introduced by the Russian mathematician Aleks ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Comparison Triangle
In metric geometry, comparison triangles are constructions used to define higher bounds on curvature in the framework of locally geodesic metric spaces, thereby playing a similar role to that of higher bounds on sectional curvature in Riemannian geometry. Definitions Comparison triangles Let M_^ = \mathbb^2 be the euclidean plane, M_^ = \mathbb^2 be the unit 2-sphere, and M_^ = \mathbb^2 be the hyperbolic plane. For k > 0, let M_^ and M_^ denote the spaces obtained, respectively, from M_^ and M_^ by multiplying the distance by \frac. For any k\in \R, M_^ is the unique complete, simply-connected, 2-dimensional Riemannian manifold of constant sectional curvature k. Let X be a metric space. Let T be a geodesic triangle in X, i.e. three points p, q and r and three geodesic segments , q/math>, , r/math> and , p/math>. A comparison triangle T* in M_^ for T is a geodesic triangle in M_^ with vertices p', q' and r' such that d(p,q) = d(p',q'), d(p,r) = d(p',r') and d(r,q) = d(r',q') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Supremum
In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, and if ''b'' is a lower bound of S, then ''b'' is less than or equal to the infimum of S. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; : suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. If the supremum of S exists, it is unique, and if ''b'' is an upper bound of S, then the supremum of S is less than or equal to ''b''. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is, in a precise sense, dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]