Time Machine (device)
   HOME





Time Machine (device)
A time machine is a fictional or hypothetical device that allows time travel. Concept A time machine is a device that makes time travel possible. The ''Stanford Encyclopedia of Philosophy'' distinguishes between two different types of time machines: a science fiction variety that is not bound by the laws of physics and a hypothetical variety discussed in theoretical physics that relies on the creation of closed timelike curves (CTCs). Paul J. Nahin distinguishes between "weak" time machines that exploit existing CTCs and "strong" time machines that are themselves responsible for the creation of the CTCs. Related concepts '' Brave New Words: The Oxford Dictionary of Science Fiction'' and ''The Encyclopedia of Science Fiction'' distinguish between this and time slip, where the time travel occurs without technological aid. ''The Encyclopedia of Science Fiction'' additionally distinguishes the concept of an immobile time gate or portal. ''The Encyclopedia of Science Fiction' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time Travel
Time travel is the hypothetical activity of traveling into the past or future. Time travel is a concept in philosophy and fiction, particularly science fiction. In fiction, time travel is typically achieved through the use of a device known as a time machine. The idea of a time machine was popularized by H. G. Wells's 1895 novel ''The Time Machine''. It is uncertain whether time travel to the past would be physically possible. Such travel, if at all feasible, may give rise to questions of causality. Forward time travel, outside the usual sense of the perception of time, is an extensively observed phenomenon and is well understood within the framework of special relativity and general relativity. However, making one body advance or delay more than a few milliseconds compared to another body is not feasible with current technology. As for backward time travel, it is possible to find solutions in general relativity that allow for it, such as a rotating black hole. Traveling t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

The Time Machine
''The Time Machine'' is an 1895 dystopian post-apocalyptic science fiction novella by H. G. Wells about a Victorian scientist known as the Time Traveller who travels to the year 802,701. The work is generally credited with the popularization of the concept of time travel by using a vehicle or device to travel purposely and selectively forward or backward through time. The term "time machine", coined by Wells, is now almost universally used to refer to such a vehicle or device. Utilizing a frame story set in then-present Victorian era, Victorian England, Wells's text focuses on a recount of the otherwise anonymous Time Traveller's journey into the far future. A work of future history and speculative evolution, ''The Time Machine'' is interpreted in modern times as a commentary on the increasing Distribution of wealth, inequality and Social class, class divisions of Wells's era, which he projects as giving rise to two separate human species: the fair, childlike Eloi, and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kip Thorne
Kip Stephen Thorne (born June 1, 1940) is an American theoretical physicist and writer known for his contributions in gravitational physics and astrophysics. Along with Rainer Weiss and Barry C. Barish, he was awarded the 2017 Nobel Prize in Physics for his contributions to the LIGO detector and the observation of gravitational waves. A longtime friend and colleague of Stephen Hawking and Carl Sagan, he was the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology (Caltech) until 2009 and speaks of the astrophysical implications of the general theory of relativity. He continues to do scientific research and scientific consulting, a notable example of which was for the Christopher Nolan film '' Interstellar''. Life and career Thorne was born on June 1, 1940, in Logan, Utah. His father, D. Wynne Thorne (1908–1979), was a professor of soil chemistry at Utah State University, and his mother, Alison (née Comish; 1914–2004), was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mike Morris (physicist)
Michael S. Morris is a Physics professor at Butler University, Indianapolis, United States. He earned a PhD in physics from Caltech under the supervision of Kip Thorne.Ph.D.'s Awarded by Caltech, with Thorne as the Thesis Advisor
California Institute of Technology. Retrieved 26 Apr. 2007. Among his nine published peer-reviewed papers, his most notable theoretical contribution is his pioneering analysis of time travel through traversable wormholes, coauthored in 1987 with Kip Thorne, and Ulvi Yurtsever. Kip Thorne tells the story of this discovery in his 1995 book ''Black Holes and Time Warps, Black Holes and Time Warps: Einstein's Outrageous Legacy''.


Publications

* * * (A tutorial paper)


See also

* Roman arch (physics), Roman arch


References ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



picture info

Wormhole
A wormhole is a hypothetical structure that connects disparate points in spacetime. It can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both). Wormholes are based on a special Solutions of the Einstein field equations, solution of the Einstein field equations. More precisely they are a transcendental bijection of the spacetime continuum, an Asymptote, asymptotic projection of the Calabi–Yau manifold manifesting itself in anti-de Sitter space. Wormholes are consistent with the General relativity, general theory of relativity, but whether they actually exist is unknown. Many physicists postulate that wormholes are merely projections of a Four-dimensional space, fourth spatial dimension, analogous to how a two-dimensional (2D) being could experience only part of a three-dimensional (3D) object. In 1995, Matt Visser suggested there may be many wormholes in the universe if cosmic strings with negat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frank J
Frank, FRANK, or Franks may refer to: People * Frank (given name) * Frank (surname) * Franks (surname) * Franks, a Germanic people in late Roman times * Franks, a term in the Muslim world for all western Europeans, particularly during the Crusades Currency * Liechtenstein franc or frank, the currency of Liechtenstein since 1920 * Swiss franc or frank, the currency of Switzerland since 1850 * Westphalian frank, currency of the Kingdom of Westphalia between 1808 and 1813 * The currencies of the German-speaking cantons of Switzerland (1803–1814): ** Appenzell frank ** Aargau frank ** Basel frank ** Berne frank ** Fribourg frank ** Glarus frank ** Graubünden frank ** Luzern frank ** Schaffhausen frank ** Schwyz frank ** Solothurn frank ** St. Gallen frank ** Thurgau frank ** Unterwalden frank ** Uri frank ** Zürich frank Places * Frank, Alberta, Canada, an urban community, formerly a village * Franks, Illinois, United States, an unincorporated community ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tipler Cylinder
A Tipler cylinder, also called a Tipler time machine, is a hypothetical object theorized to be a potential mode of time travel—although results have shown that a Tipler cylinder could only allow time travel if its length were infinite or with the existence of negative energy. Discovery The Tipler cylinder was discovered as a solution to the equations of general relativity by Willem Jacob van Stockum in 1936 and Kornel Lanczos in 1924, but not recognized as allowing closed timelike curves until an analysis by Frank Tipler Available in GIF format here: page123
an
4
See als

[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Geodesics In General Relativity
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting a star is the projection of a geodesic of the curved four-dimensional (4-D) spacetime geometry around the star onto three-dimensional (3-D) space. Mathematical expression The full geodesic equation is +\Gamma^\mu _=0\ where ''s'' is a scalar parameter of motion (e.g. the proper time), and \Gamma^\mu _ are Christoffel symbols (sometimes called the affine connection coefficients or Levi-Civita connection coefficients) symme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Einstein Field Equations
In the General relativity, general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of Matter#In general relativity and cosmology, matter within it. The equations were published by Albert Einstein in 1915 in the form of a Tensor, tensor equation which related the local ' (expressed by the Einstein tensor) with the local energy, momentum and stress within that spacetime (expressed by the stress–energy tensor). Analogously to the way that electromagnetic fields are related to the distribution of Charge (physics), charges and Electric current, currents via Maxwell's equations, the EFE relate the spacetime geometry to the distribution of mass–energy, momentum and stress, that is, they determine the Metric tensor (general relativity), metric tensor of spacetime for a given arrangement of stress–energy–momentum in the spacetime. The relationship between the metric tensor and the Ei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General theory of relativity, relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time in physics, time, or four-dimensional spacetime. In particular, the ''curvature of spacetime'' is directly related to the energy and momentum of whatever is present, including matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations. Newton's law of universal gravitation, which describes gravity in classical mechanics, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Albert Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence formula , which arises from special relativity, has been called "the world's most famous equation". He received the 1921 Nobel Prize in Physics for . Born in the German Empire, Einstein moved to Switzerland in 1895, forsaking his German citizenship (as a subject of the Kingdom of Württemberg) the following year. In 1897, at the age of seventeen, he enrolled in the mathematics and physics teaching diploma program at the Swiss ETH Zurich, federal polytechnic school in Zurich, graduating in 1900. He acquired Swiss citizenship a year later, which he kept for the rest of his life, and afterwards secured a permanent position at the Swiss Patent Office in Bern. In 1905, he submitted a successful PhD dissertation to the University of Zurich. In 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]