Tikhonov's Theorem
   HOME





Tikhonov's Theorem
In mathematics, Tychonoff's theorem states that the product of any collection of compact topological spaces is compact with respect to the product topology. The theorem is named after Andrey Nikolayevich Tikhonov (whose surname sometimes is transcribed ''Tychonoff''), who proved it first in 1930 for powers of the closed unit interval and in 1935 stated the full theorem along with the remark that its proof was the same as for the special case. The earliest known published proof is contained in a 1935 article by Tychonoff, . Tychonoff's theorem is often considered as perhaps the single most important result in general topology (along with Urysohn's lemma). The theorem is also valid for topological spaces based on fuzzy sets. Topological definitions The theorem depends crucially upon the precise definitions of compactness and of the product topology; in fact, Tychonoff's 1935 paper defines the product topology for the first time. Conversely, part of its importance is to give con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Banach–Alaoglu Theorem
In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem (also known as Alaoglu's theorem) states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact. This theorem has applications in physics when one describes the set of states of an algebra of observables, namely that any state can be written as a convex linear combination of so-called pure states. History According to Lawrence Narici and Edward Beckenstein, the Alaoglu theorem is a “very important result—maybe most important fact about the weak-* topology—hatechos throughout functional analysis.” In 1912, Helly proved that the unit ball of the continuous dual space of C( , b is countably weak-* co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Berkovich Spectrum
In mathematics, a Berkovich space, introduced by , is a version of an analytic space over a non-Archimedean field (e.g. ''p''-adic field), refining Tate's notion of a rigid analytic space. Motivation In the complex case, algebraic geometry begins by defining the complex affine space to be \Complex^n. For each U\subset\Complex^n, we define \mathcal_U, the ring of analytic functions on U to be the ring of holomorphic functions, i.e. functions on U that can be written as a convergent power series in a neighborhood of each point. We then define a local model space for f_, \ldots, f_\in\mathcal_U to be :X:=\ with \mathcal_X=\mathcal_U/(f_, \ldots,f_). A complex analytic space is a locally ringed \Complex-space (Y, \mathcal_Y) which is locally isomorphic to a local model space. When k is a complete non-Archimedean field, we have that k is totally disconnected. In such a case, if we continue with the same definition as in the complex case, we wouldn't get a good analytic theory. B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Algebra (structure)
In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution). Every Boolean algebra gives rise to a Boolean ring, and vice versa, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨). However, the theory of Boolean rings has an inherent asymmetry between the two operators, while the axioms and theorems of Boolean algebra express the symmetry of the theory described by the duality principle. __TOC__ History The term "Boolean algebra" honors George Boole (1815–1864), a self-educated E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stone Space
In topology and related areas of mathematics, a Stone space, also known as a profinite space or profinite set, is a compact Hausdorff totally disconnected space. Stone spaces are named after Marshall Harvey Stone who introduced and studied them in the 1930s in the course of his investigation of Boolean algebras, which culminated in his representation theorem for Boolean algebras. Equivalent conditions The following conditions on the topological space X are equivalent: * X is a Stone space; * X is homeomorphic to the projective limit (in the category of topological spaces) of an inverse system of finite discrete spaces; * X is compact and totally separated; * X is compact, T0, and zero-dimensional (in the sense of the small inductive dimension); * X is coherent and Hausdorff. Examples Important examples of Stone spaces include finite discrete spaces, the Cantor set and the space \Z_p of p-adic integers, where p is any prime number. Generalizing these examples, any p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous linear operators on a complex Hilbert space with two additional properties: * ''A'' is a topologically closed set in the norm topology of operators. * ''A'' is closed under the operation of taking adjoints of operators. Another important class of non-Hilbert C*-algebras includes the algebra C_0(X) of complex-valued continuous functions on ''X'' that vanish at infinity, where ''X'' is a locally compact Hausdorff space. C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gelfand Representation
In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: * a way of representing commutative Banach algebras as algebras of continuous functions; * the fact that for commutative C*-algebras, this representation is an isometric isomorphism. In the former case, one may regard the Gelfand representation as a far-reaching generalization of the Fourier transform of an integrable function. In the latter case, the Gelfand–Naimark representation theorem is one avenue in the development of spectral theory for normal operators, and generalizes the notion of diagonalizing a normal matrix. Historical remarks One of Gelfand's original applications (and one which historically motivated much of the study of Banach algebras) was to give a much shorter and more conceptual proof of a celebrated lemma of Norbert Wiener (see the citation below), characterizing the elements of the group algebras ''L''1(R) and \ell^1() whose translate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cellular Automaton
A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling. A cellular automaton consists of a regular grid of ''cells'', each in one of a finite number of ''State (computer science), states'', such as ''on'' and ''off'' (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its ''neighborhood'' is defined relative to the specified cell. An initial state (time ''t'' = 0) is selected by assigning a state for each cell. A new ''generation'' is created (advancing ''t'' by 1), according to some fixed ''rule'' (generally, a mathematical function) that dete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Curtis–Hedlund–Lyndon Theorem
The Curtis–Hedlund–Lyndon theorem is a mathematical characterization of cellular automata in terms of their symbolic dynamics. It is named after Morton L. Curtis, Gustav A. Hedlund, and Roger Lyndon; in his 1969 paper stating the theorem, Hedlund credited Curtis and Lyndon as co-discoverers. It has been called "one of the fundamental results in symbolic dynamics". The theorem states that a function from a shift space to itself represents the transition function of a one-dimensional cellular automaton if and only if it is continuous (with respect to the Cantor topology) and equivariant (with respect to the shift map). More generally, it asserts that the morphisms between any two shift spaces (that is, continuous mappings that commute with the shift) are exactly those mappings which can be defined uniformly by a local rule. The version of the theorem in Hedlund's paper applied only to one-dimensional finite automata, but a generalization to higher dimensional integer lattices ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Critical Graph
In graph theory, a critical graph is an undirected graph all of whose proper subgraphs have smaller chromatic number. In such a graph, every vertex or edge is a critical element, in the sense that its deletion would decrease the number of colors needed in a graph coloring of the given graph. Each time a single edge or vertex (along with its incident edges) is removed from a critical graph, the decrease in the number of colors needed to color that graph cannot be by more than one. Variations A ''k-critical graph'' is a critical graph with chromatic number k. A graph G with chromatic number k is ''k-vertex-critical'' if each of its vertices is a critical element. Critical graphs are the ''minimal'' members in terms of chromatic number, which is a very important measure in graph theory. Some properties of a k-critical graph G with n vertices and m edges: * G has only one component. * G is finite (this is the De Bruijn–Erdős theorem). * The minimum degree \delta(G) obeys th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform Convergence
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E as the function domain if, given any arbitrarily small positive number \varepsilon, a number N can be found such that each of the functions f_N, f_,f_,\ldots differs from f by no more than \varepsilon ''at every point'' x ''in'' E. Described in an informal way, if f_n converges to f uniformly, then how quickly the functions f_n approach f is "uniform" throughout E in the following sense: in order to guarantee that f_n(x) differs from f(x) by less than a chosen distance \varepsilon, we only need to make sure that n is larger than or equal to a certain N, which we can find without knowing the value of x\in E in advance. In other words, there exists a number N=N(\varepsilon) that could depend on \varepsilon but is ''independent of x'', such that choosing n\geq N wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]