HOME





Theta Function Of A Lattice
In mathematics, the theta function of a lattice is a function whose coefficients give the number of vectors of a given norm. Definition One can associate to any (positive-definite) lattice Λ a theta function given by :\Theta_\Lambda(\tau) = \sum_e^\qquad\mathrm\,\tau > 0. The theta function of a lattice is then a holomorphic function on the upper half-plane. Furthermore, the theta function of an even unimodular lattice of rank ''n'' is actually a modular form of weight ''n''/2. The theta function of an integral lattice is often written as a power series in q = e^ so that the coefficient of ''q''''n'' gives the number of lattice vectors of norm 2''n''. See also * Siegel theta series In mathematics, a Siegel theta series is a Siegel modular form associated to a positive definite lattice, generalizing the 1-variable theta function of a lattice. Definition Suppose that ''L'' is a positive definite lattice. The Siegel theta ser ... * Theta constant References ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice (discrete Subgroup)
In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R''n'', this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood. The theory is particularly rich for lattices in semisimple Lie groups or more generally in semisimple algebraic groups over local fields. In particular there is a wealth of rigidity results in this setting, and a celebrated theorem of Grigory Margulis states that in most cases all lattices are obtained as arithmetic groups. Lattices are also well-studied in some other classes of groups, in particular groups associated to Kac–Moody algebras and automorphisms groups of regular trees (the latter are known as ''tree lattices''). Lattices a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theta Function
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. Theta functions are parametrized by points in a tube domain inside a complex Lagrangian Grassmannian, namely the Siegel upper half space. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holomorphic Function
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: It implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (is '' analytic''). Holomorphic functions are the central objects of study in complex analysis. Though the term '' analytic function'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Upper Half-plane
In mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is the set of points with instead. Arbitrary oriented half-planes can be obtained via a planar rotation. Half-planes are an example of two-dimensional half-space. A half-plane can be split in two quadrants. Affine geometry The affine transformations of the upper half-plane include # shifts (x,y)\mapsto (x+c,y), c\in\mathbb, and # dilations (x,y)\mapsto (\lambda x,\lambda y), \lambda > 0. Proposition: Let and be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes A to B. :Proof: First shift the center of to Then take \lambda=(\text\ B)/(\text\ A) and dilate. Then shift to the center of Inversive geometry Definition: \mathcal := \left\ . can be recognized as the circle of radius centered at and as the polar plot of \rho(\theta) = \cos \theta. Proposition: in and are collinear points. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unimodular Lattice
In geometry and mathematical group theory, a unimodular lattice is an integral Lattice (group), lattice of Lattice (group)#Dividing space according to a lattice, determinant 1 or −1. For a lattice in ''n''-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E8 lattice, ''E''8 lattice and the Leech lattice are two famous examples. Definitions * A lattice is a free abelian group of finite free abelian group, rank with a symmetric bilinear form (·, ·). * The lattice is integral if (·,·) takes integer values. * The dimension of a lattice is the same as its free module, rank (as a Z-module (mathematics), module). * The norm of a lattice element ''a'' is (''a'', ''a''). * A lattice is positive definite if the norm of all nonzero elements is positive. * The determinant of a lattice is the determinant of the Gram matrix, a matrix (mathematics), matrix with entries (''ai'', ''aj'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Form
In mathematics, a modular form is a holomorphic function on the complex upper half-plane, \mathcal, that roughly satisfies a functional equation with respect to the group action of the modular group and a growth condition. The theory of modular forms has origins in complex analysis, with important connections with number theory. Modular forms also appear in other areas, such as algebraic topology, sphere packing, and string theory. Modular form theory is a special case of the more general theory of automorphic forms, which are functions defined on Lie groups that transform nicely with respect to the action of certain discrete subgroups, generalizing the example of the modular group \mathrm_2(\mathbb Z) \subset \mathrm_2(\mathbb R). Every modular form is attached to a Galois representation. The term "modular form", as a systematic description, is usually attributed to Erich Hecke. The importance of modular forms across multiple field of mathematics has been humorously re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Siegel Theta Series
In mathematics, a Siegel theta series is a Siegel modular form associated to a positive definite lattice, generalizing the 1-variable theta function of a lattice. Definition Suppose that ''L'' is a positive definite lattice. The Siegel theta series of degree ''g'' is defined by :\Theta_L^g(T) = \sum_\exp(\pi i Tr(\lambda T \lambda^t)) where ''T'' is an element of the Siegel upper half plane of degree ''g''. This is a Siegel modular form of degree ''d'' and weight dim(''L'')/2 for some subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ... of the Siegel modular group. If the lattice ''L'' is even and unimodular then this is a Siegel modular form for the full Siegel modular group. When the degree is 1 this is just the usual theta function of a lattice. References *{{citati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theta Constant
In mathematics, a theta constant or Thetanullwert' (German for theta zero value; plural Thetanullwerte) is the restriction ''θ''''m''(''τ'') = θ''m''(''τ'',''0'') of a theta function ''θ''''m''(τ,''z'') with rational characteristic ''m'' to ''z'' = 0. The variable ''τ'' may be a complex number in the upper half-plane in which case the theta constants are modular forms, or more generally may be an element of a Siegel upper half plane in which case the theta constants are Siegel modular forms. The theta function of a lattice is essentially a special case of a theta constant. Definition The theta function ''θ''''m''(''τ'',''z'') = ''θ''''a'',''b''(''τ'',''z'')is defined by : \theta_(\tau,z) = \sum_ \exp\left pi (\xi+a)\tau(\xi+a)^t + 2\pi i(\xi+a)(z+b)^t\right/math> where * ''n'' is a positive integer, called the genus or rank. * ''m'' = (''a'',''b'') is called the characteristic * ''a'',''b'' are in R''n'' * ''τ'' is a complex ''n'' by ''n'' matr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]