Taniyama's Problems
   HOME



picture info

Taniyama's Problems
Taniyama's problems are a set of 36 mathematical problems posed by Japanese mathematician Yutaka Taniyama in 1955. The problems primarily focused on algebraic geometry, number theory, and the connections between modular forms and elliptic curves. History In the 1950s post-World War II period of mathematics, there was renewed interest in the theory of modular curves due to the work of Taniyama and Goro Shimura. During the 1955 international symposium on algebraic number theory at Tokyo and Nikkō—the first symposium of its kind to be held in Japan that was attended by international mathematicians including Jean-Pierre Serre, Emil Artin, Andre Weil, Richard Brauer, K. G. Ramanathan, and Daniel Zelinsky—Taniyama compiled his 36 problems in a document titled ''"Problems of Number Theory"'' and distributed mimeographs of his collection to the symposium's participants. These problems would become well known in mathematical folklore. Serre later brought attention to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Unsolved Problems In Mathematics
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, Mathematical analysis, analysis, combinatorics, Algebraic geometry, algebraic, Differential geometry, differential, Discrete geometry, discrete and Euclidean geometry, Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations. Some problems belong to more than one discipline and are studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and some lists of unsolved problems, such as the Millennium Prize Problems, receive considerable attention. This list is a composite of notable unsolved problems mentioned in previously published lists, including but not limited to lists considered authoritative, and the problems listed here vary widely in both diffi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Emil Artin
Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrians, Austrian mathematician of Armenians, Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions. He also contributed to the pure theories of rings, groups and fields. Along with Emmy Noether, he is considered the founder of modern abstract algebra. Early life and education Parents Emil Artin was born in Vienna to parents Emma Maria, née Laura (stage name Clarus), a soubrette on the operetta stages of Austria and Germany, and Emil Hadochadus Maria Artin, Austrian-born of mixed Austrians, Austrian and Armenian people, Armenian descent. His Armenian last name was Artinian which was shortened to Artin. Several documents, including Emil's birth certificate, list the father's occupation as "opera singer" though others list it as "art dealer." It see ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dedekind Zeta Functions
In mathematics, the Dedekind zeta function of an algebraic number field ''K'', generally denoted ζ''K''(''s''), is a generalization of the Riemann zeta function (which is obtained in the case where ''K'' is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at ''s'' = 1, and its values encode arithmetic data of ''K''. The extended Riemann hypothesis states that if ''ζ''''K''(''s'') = 0 and 0  1. In the case ''K'' = Q, this definition reduces to that of the Riemann zeta function. Euler product The Dedekind zeta function of K has an Euler product which is a product over all the non-zero prime ideals \mathfrak of \mathcal_K :\zeta_K (s) = \prod_ \frac,\text(s)>1. This is the expression in analytic terms of the uniqueness of prime factorizatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Langlands Program
In mathematics, the Langlands program is a set of conjectures about connections between number theory, the theory of automorphic forms, and geometry. It was proposed by . It seeks to relate the structure of Galois groups in algebraic number theory to automorphic forms and, more generally, the representation theory of algebraic groups over local fields and adeles. It was described by Edward Frenkel as the " grand unified theory of mathematics." Background The Langlands program is built on existing ideas: the philosophy of cusp forms formulated a few years earlier by Harish-Chandra and , the work and Harish-Chandra's approach on semisimple Lie groups, and in technical terms the trace formula of Selberg and others. What was new in Langlands' work, besides technical depth, was the proposed connection to number theory, together with its rich organisational structure hypothesised (so-called functoriality). Harish-Chandra's work exploited the principle that what can be d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat's Last Theorem
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive number, positive integers , , and satisfy the equation for any integer value of greater than . The cases and have been known since antiquity to have infinitely many solutions.Singh, pp. 18–20 The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of ''Arithmetica''. Fermat added that he had a proof that was too large to fit in the margin. Although other statements claimed by Fermat without proof were subsequently proven by others and credited as theorems of Fermat (for example, Fermat's theorem on sums of two squares), Fermat's Last Theorem resisted proof, leading to doubt that Fermat ever had a correct proof. Consequently, the proposition became known as a conjecture rather than a theorem. After 358 years of effort by mathematicians, Wiles's proof of Fermat's Last Theorem, the first success ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wiles's Proof Of Fermat's Last Theorem
Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Sir Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were believed to be impossible to prove using previous knowledge by almost all living mathematicians at the time. Wiles first announced his proof on 23 June 1993 at a lecture in Cambridge entitled "Modular Forms, Elliptic Curves and Galois Representations". However, in September 1993 the proof was found to contain an error. One year later on 19 September 1994, in what he would call "the most important moment of isworking life", Wiles stumbled upon a revelation that allowed him to correct the proof to the satisfaction of the mathematical community. The corrected proof was published in 1995. Wiles's proof uses many techniques from algebraic geometry and number theory and has many ramificatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Andrew Wiles
Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specialising in number theory. He is best known for Wiles's proof of Fermat's Last Theorem, proving Fermat's Last Theorem, for which he was awarded the 2016 Abel Prize and the 2017 Copley Medal and for which he was appointed a Order of the British Empire, Knight Commander of the Order of the British Empire in 2000. In 2018, Wiles was appointed the first Regius Professor of Mathematics at Oxford. Wiles is also a MacArthur Fellows Program, 1997 MacArthur Fellow. Wiles was born in Cambridge to theologian Maurice Frank Wiles and Patricia Wiles. While spending much of his childhood in Nigeria, Wiles developed an interest in mathematics and in Fermat's Last Theorem in particular. After moving to Oxford and graduating from there in 1974, he worked on unifying Galois representations, elliptic curves and modular forms, starting with Barry Mazur's gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Elliptic Curve
A modular elliptic curve is an elliptic curve ''E'' that admits a parametrization ''X''0(''N'') → ''E'' by a modular curve. This is not the same as a modular curve that happens to be an elliptic curve, something that could be called an elliptic modular curve. The modularity theorem, also known as the Taniyama–Shimura conjecture, asserts that every elliptic curve defined over the rational numbers is modular. History and significance In the 1950s and 1960s a connection between elliptic curves and modular forms was conjectured by the Japanese mathematician Goro Shimura based on ideas posed by Yutaka Taniyama. In the West it became well known through a 1967 paper by André Weil. With Weil giving conceptual evidence for it, it is sometimes called the Modularity theorem, Taniyama–Shimura–Weil conjecture. It states that every rational number, rational elliptic curve is classical modular curve, modular. On a separate branch of development, in the late 1960s, Yves Hell ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Modularity Theorem
In number theory, the modularity theorem states that elliptic curves over the field of rational numbers are related to modular forms in a particular way. Andrew Wiles and Richard Taylor proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem. Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001. Before that, the statement was known as the Taniyama–Shimura conjecture, Taniyama–Shimura–Weil conjecture, or the modularity conjecture for elliptic curves. Statement The theorem states that any elliptic curve over \Q can be obtained via a rational map with integer coefficients from the classical modular curve for some integer ; this is a curve with integer coefficients with an explicit definition. This mapping is called a modular parametrization of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Folklore
In common mathematical parlance, a mathematical result is called folklore if it is an unpublished result with no clear originator, but which is well-circulated and believed to be true among the specialists. More specifically, folk mathematics, or mathematical folklore, is the body of theorems, definitions, proofs, facts or techniques that circulate among mathematicians by word of mouth, but have not yet appeared in print, either in books or in scholarly journals. Quite important at times for researchers are folk theorems, which are results known, at least to experts in a field, and are considered to have established status, though not published in complete form. Sometimes, these are only alluded to in the public literature. An example is a book of exercises, described on the back cover: Another distinct category is well-knowable mathematics, a term introduced by John Conway. These mathematical matters are known and factual, but not in active circulation in relation with curren ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mimeograph
A mimeograph machine (often abbreviated to mimeo, sometimes called a stencil duplicator or stencil machine) is a low-cost duplicating machine that works by forcing ink through a stencil onto paper. The process is called mimeography, and a copy made by the process is a mimeograph. Mimeographs, along with spirit duplicators and hectographs, were common technologies for printing small quantities of a document, as in office work, classroom materials, and church bulletins. For even smaller quantities, up to about five, a typist would use carbon paper. Early fanzines were printed by mimeograph because the machines and supplies were widely available and inexpensive. Beginning in the late 1960s and continuing into the 1970s, photocopying gradually displaced mimeographs, spirit duplicators, and hectographs. Origins Use of stencils is an ancient art, butthrough chemistry, papers, and pressestechniques advanced rapidly in the late nineteenth century: Papyrograph A description of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]