HOME
*





Tftr
The Tokamak Fusion Test Reactor (TFTR) was an experimental tokamak built at Princeton Plasma Physics Laboratory (PPPL) circa 1980 and entering service in 1982. TFTR was designed with the explicit goal of reaching scientific breakeven, the point where the heat being released from the fusion reactions in the plasma is equal or greater than the heating being supplied to the plasma by external devices to warm it up. The TFTR never achieved this goal, but it did produce major advances in confinement time and energy density. It was the world's first magnetic fusion device to perform extensive scientific experiments with plasmas composed of 50/50 deuterium/tritium (D-T), the fuel mix required for practical fusion power production, and also the first to produce more than 10 MW of fusion power. It set several records for power output, maximum temperature, and fusion triple product. TFTR shut down in 1997 after fifteen years of operation. PPPL used the knowledge from TFTR to begin studyi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Princeton Plasma Physics Laboratory
Princeton Plasma Physics Laboratory (PPPL) is a United States Department of Energy national laboratory for plasma physics and nuclear fusion science. Its primary mission is research into and development of fusion as an energy source. It is known in particular for the development of the stellarator and tokamak designs, along with numerous fundamental advances in plasma physics and the exploration of many other plasma confinement concepts. PPPL grew out of the top-secret Cold War project to control thermonuclear reactions, called Project Matterhorn. The focus of this program changed from H-bombs to fusion power in 1951, when Lyman Spitzer developed the stellarator concept and was granted funding from the Atomic Energy Commission to study the concept. This led to a series of machines in the 1950s and 60s. In 1961, after declassification, Project Matterhorn was renamed the Princeton Plasma Physics Laboratory. PPPL's stellarators proved unable to meet their performance goals. In 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tokamak
A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. , it was the leading candidate for a practical fusion reactor. Tokamaks were initially conceptualized in the 1950s by Soviet physicists Igor Tamm and Andrei Sakharov, inspired by a letter by Oleg Lavrentiev. The first working tokamak was attributed to the work of Natan Yavlinsky on the T-1 in 1958. It had been demonstrated that a stable plasma equilibrium requires magnetic field lines that wind around the torus in a helix. Devices like the z-pinch and stellarator had attempted this, but demonstrated serious instabilities. It was the development of the concept now known as the safety factor (labelled ''q'' in mathematical notation) that guided tokamak development; by arra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Princeton Large Torus
The Princeton Large Torus (or PLT), was an early tokamak built at the Princeton Plasma Physics Laboratory (PPPL). It was one of the first large scale tokamak machines, and among the most powerful in terms of current and magnetic fields. Originally built to demonstrate that larger devices would have better confinement times, it was later modified to perform heating of the plasma fuel, a requirement of any practical fusion power device. The tokamak became a topic of serious discussion in 1968, when the Soviets published new data showing them to be far and away better than any other fusion device. This generated significant scepticism among other researchers and took some time before the PPPL was convinced to convert their Model C stellarator to the tokamak configuration. It immediately validated the Soviet results and then surpassed them. The next step in developing the system would be to build a larger machine in order to test whether the confinement time of the plasma ''scaled'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


JT-60
JT-60 (short for Japan Torus-60) is a large research tokamak, the flagship of Japan's magnetic fusion program, previously run by the Japan Atomic Energy Research Institute (JAERI) and currently run by the Japan Atomic Energy Agency's (JAEA) Naka Fusion Institute in Ibaraki Prefecture. It is properly an advanced tokamak, including a D-shaped plasma cross-section and active feedback control. First designed in the 1970s as the "Breakeven Plasma Test Facility" (BPTF), the goal of the system was to reach breakeven fusion power, a goal set for the US's TFTR, the UK's JET and the Soviet T-15. JT-60 began operations in 1985, and like the TFTR and JET that began operations only shortly before it, JT-60 demonstrated performance far below predictions. Over the next two decades, JET and JT-60 led the effort to regain the performance originally expected of these machines. JT-60 underwent two major modifications during this time, producing JT-60A, and then JT-60U (for "upgrade"). These change ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Joint European Torus
The Joint European Torus, or JET, is an operational magnetically confined plasma physics experiment, located at Culham Centre for Fusion Energy in Oxfordshire, UK. Based on a tokamak design, the fusion research facility is a joint European project with a main purpose of opening the way to future nuclear fusion grid energy. At the time of its design JET was larger than any comparable machine. JET was built with the hope of reaching ''scientific breakeven'' where the fusion energy gain factor ''Q'' =1.0. It began operation in 1983 and spent most of the next decade increasing its performance in a lengthy series of experiments and upgrades. In 1991 the first experiments including tritium were made, making JET the first reactor in the world to run on the production fuel of a 50–50 mix of tritium and deuterium. It was also decided to add a divertor design to JET, which occurred between 1991 and 1993. Performance was significantly improved, and in 1997 JET set the record for t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


National Spherical Torus Experiment
The National Spherical Torus Experiment (NSTX) is a magnetic fusion device based on the ''spherical tokamak'' concept. It was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. It entered service in 1999. In 2012 it was shut down as part of an upgrade program and became NSTX-U, for Upgrade. The spherical tokamak (ST) is an offshoot of the conventional tokamak design. Proponents claim that it has a number of practical advantages over these devices, some of them dramatic. For this reason the ST has seen considerable interest since it was proposed in the late 1980s. However, development remains effectively one generation behind mainline efforts such as JET. Other major experiments in the field include the pioneering START and MAST at Culham in the UK. NSTX studies the physics principles of spherically shaped plasmas—hot ionized gases in which nucle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fusion Triple Product
The Lawson criterion is a figure of merit used in nuclear fusion research. It compares the rate of energy being generated by fusion reactions within the fusion fuel to the rate of energy losses to the environment. When the rate of production is higher than the rate of loss, the system will produce net energy. If enough of that energy is captured by the fuel, the system will become self-sustaining and is said to be ignited. The concept was first developed by John D. Lawson in a classified 1955 paper that was declassified and published in 1957. As originally formulated, the Lawson criterion gives a minimum required value for the product of the plasma (electron) density ''n''e and the "energy confinement time" \tau_E that leads to net energy output. Later analysis suggested that a more useful figure of merit is the triple product of density, confinement time, and plasma temperature ''T''. The triple product also has a minimum required value, and the name "Lawson criterion" may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lawson Criterion
The Lawson criterion is a figure of merit used in nuclear fusion research. It compares the rate of energy being generated by fusion reactions within the fusion fuel to the rate of energy losses to the environment. When the rate of production is higher than the rate of loss, the system will produce net energy. If enough of that energy is captured by the fuel, the system will become self-sustaining and is said to be ignited. The concept was first developed by John D. Lawson in a classified 1955 paper that was declassified and published in 1957. As originally formulated, the Lawson criterion gives a minimum required value for the product of the plasma (electron) density ''n''e and the "energy confinement time" \tau_E that leads to net energy output. Later analysis suggested that a more useful figure of merit is the triple product of density, confinement time, and plasma temperature ''T''. The triple product also has a minimum required value, and the name "Lawson criterion" may r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutral Beam Injection
Neutral-beam injection (NBI) is one method used to heat plasma inside a fusion device consisting in a beam of high-energy neutral particles that can enter the magnetic confinement field. When these neutral particles are ionized by collision with the plasma particles, they are kept in the plasma by the confining magnetic field and can transfer most of their energy by further collisions with the plasma. By tangential injection in the torus, neutral beams also provide momentum to the plasma and current drive, one essential feature for long pulses of burning plasmas. Neutral-beam injection is a flexible and reliable technique, which has been the main heating system on a large variety of fusion devices. To date, all NBI systems were based on positive precursor ion beams. In the 1990s there has been impressive progress in negative ion sources and accelerators with the construction of multi-megawatt negative-ion-based NBI systems at LHD (H0, 180 keV) and JT-60U (D0, 500 keV) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bob Hirsch
Bob, BOB, or B.O.B. may refer to: Places *Mount Bob, New York, United States *Bob Island, Palmer Archipelago, Antarctica People, fictional characters, and named animals *Bob (given name), a list of people and fictional characters *Bob (surname) *Bob (dog), a dog that received the Dickin Medal for bravery in World War II *Bob the Railway Dog, a part of South Australian Railways folklore Television, games, and radio * ''Bob'' (TV series), an American comedy series starring Bob Newhart * ''B.O.B.'' (video game), a side-scrolling shooter *Bob FM, on-air brand of a number of FM radio stations in North America Music Musicians and groups * B.o.B (born 1988), American rapper and record producer *Bob (band), a British indie pop band *The Bobs, an American a cappella group *Boyz on Block, a British pop supergroup Songs * "B.O.B" (song), by OutKast * "Bob" ("Weird Al" Yankovic song), from the 2003 album ''Poodle Hat'' by "Weird Al" Yankovic *"Bob", a song from the album ''Brighter Than C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]