HOME





Syncategorematic Term
In logic and linguistics, an expression is syncategorematic if it lacks a denotation but can nonetheless affect the denotation of a larger expression which contains it. Syncategorematic expressions are contrasted with categorematic expressions, which have their own denotations. For example, consider the following rules for interpreting the plus sign. The first rule is syncategorematic since it gives an interpretation for expressions containing the plus sign but does not give an interpretation for the plus sign itself. On the other hand, the second rule does give an interpretation for the plus sign itself, so it is categorematic. # ''Syncategorematic'': For any numeral symbols "n" and "m", the expression "n + m" denotes the sum of the numbers denoted by "n" and "m". # ''Categorematic'': The plus sign "+" denotes the operation of addition. Syncategorematicity was a topic of research in medieval philosophy since syncategorematic expressions cannot stand for any of Aristotle's categ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to wor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Philosophical Terminism
Terminism is the Christian doctrine that there is a time limit for repentance from sin, after which God no longer wills the conversion and salvation of that person. This limit is asserted to be known to God alone, making conversion urgent. Among pietists such as Quakers, the doctrine permitted the co-existence, over the span of a human life, of human free will and God's sovereignty. Terminism in salvation Terminism in salvation is also mentioned in Max Weber's famous sociological work ''The Protestant Ethic and the Spirit of Capitalism''. " erminismassumes that grace is offered to all men, but for everyone either once at a definite moment in his life or at some moment for the last time" (Part II, Ch. 4, Section B). Weber offers in the same paragraph that terminism is "generally (though unjustly) attributed to Pietism by its opponents". Philosophical terminism Terminism is defined by rhetorician Walter J. Ong, who links it to nominalism, as "a concomitant of the highly qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semantics
Semantics is the study of linguistic Meaning (philosophy), meaning. It examines what meaning is, how words get their meaning, and how the meaning of a complex expression depends on its parts. Part of this process involves the distinction between sense and reference. Sense is given by the ideas and concepts associated with an expression while reference is the object to which an expression points. Semantics contrasts with syntax, which studies the rules that dictate how to create grammatically correct sentences, and pragmatics, which investigates how people use language in communication. Lexical semantics is the branch of semantics that studies word meaning. It examines whether words have one or several meanings and in what lexical relations they stand to one another. Phrasal semantics studies the meaning of sentences by exploring the phenomenon of compositionality or how new meanings can be created by arranging words. Formal semantics (natural language), Formal semantics relies o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to wor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supposition Theory
Supposition theory was a branch of medieval logic that was probably aimed at giving accounts of issues similar to modern accounts of reference, plurality, tense, and modality, within an Aristotelian context. Philosophers such as John Buridan, William of Ockham, William of Sherwood, Walter Burley, Albert of Saxony, and Peter of Spain were its principal developers. By the 14th century it seems to have drifted into at least two fairly distinct theories, the theory of "supposition proper", which included an " ampliation" and is much like a theory of reference, and the theory of "modes of supposition" whose intended function is not clear. Supposition proper Supposition was a semantic relation between a term and what that term was being used to talk about. So, for example, in the suggestion ''Drink another cup'', the term ''cup'' is suppositing for the wine contained in the cup. The logical ''suppositum'' of a term was the object the term referred to. (In grammar, ''suppositum'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Connective
In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective \lor can be used to join the two atomic formulas P and Q, rendering the complex formula P \lor Q . Common connectives include negation, disjunction, conjunction, implication, and equivalence. In standard systems of classical logic, these connectives are interpreted as truth functions, though they receive a variety of alternative interpretations in nonclassical logics. Their classical interpretations are similar to the meanings of natural language expressions such as English "not", "or", "and", and "if", but not identical. Discrepancies between natural language connectives and those of classical logic have motivated nonclassical approaches to natural language meaning as well as approaches which pair a classi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Pagus
John Pagus (; fl. first half of the 13th century) was a scholastic philosopher at the University of Paris, generally considered the first logician writing at the Arts faculty at Paris. Life He is thought to have been a Master of Arts in the 1220s and to have taught Peter of Spain. At that time he was writing on syncategorematic terms.Parts published in H. A. G. Braakhuis, ''De 13de Eeuwse Tractaten over Syncategorematische Termen''. Vol. I, Ph. Diss., Leiden University, 1979. Works *''Appellationes'' *Commentary on the ''Sentences The ''Sentences'' (. ) is a compendium of Christian theology written by Peter Lombard around 1150. It was the most important religious textbook of the Middle Ages. Background The sentence genre emerged from works like Prosper of Aquitaine's ...'' *''Rationes super Predicamenta Aristotelis'' *''Syncategoremata'' Notes References * Hein Hansen (ed.) ''John Pagus on Aristotle's Categories. A Study and Edition of the Rationes super Praedicamenta' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Generalized Quantifier
In formal semantics, a generalized quantifier (GQ) is an expression that denotes a set of sets. This is the standard semantics assigned to quantified noun phrases. For example, the generalized quantifier ''every boy'' denotes the set of sets of which every boy is a member: \ This treatment of quantifiers has been essential in achieving a compositional semantics for sentences containing quantifiers. Type theory A version of type theory is often used to make the semantics of different kinds of expressions explicit. The standard construction defines the set of types recursively as follows: #''e'' and ''t'' are types. #If ''a'' and ''b'' are both types, then so is \langle a,b\rangle #Nothing is a type, except what can be constructed on the basis of lines 1 and 2 above. Given this definition, we have the simple types ''e'' and ''t'', but also a countable infinity of complex types, some of which include: \langle e,t\rangle;\qquad \langle t,t\rangle;\qquad \langle\langle e,t\rangl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compositionality
In semantics, mathematical logic and related disciplines, the principle of compositionality is the principle that the meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used to combine them. The principle is also called Frege's principle, because Gottlob Frege is widely credited for the first modern formulation of it. However, the principle has never been explicitly stated by Frege, and arguably it was already assumed by George Boole decades before Frege's work. The principle of compositionality (also known as semantic compositionalism) is highly debated in linguistics. Among its most challenging problems there are the issues of contextuality, the non-compositionality of idiomatic expressions, and the non-compositionality of quotations. History Discussion of compositionality started to appear at the beginning of the 19th century, during which it was debated whether what was most fundamental in language was compositionalit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truth-value
In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values ('' true'' or '' false''). Truth values are used in computing as well as various types of logic. Computing In some programming languages, any expression can be evaluated in a context that expects a Boolean data type. Typically (though this varies by programming language) expressions like the number zero, the empty string, empty lists, and null are treated as false, and strings with content (like "abc"), other numbers, and objects evaluate to true. Sometimes these classes of expressions are called falsy and truthy. For example, in Lisp, nil, the empty list, is treated as false, and all other values are treated as true. In C, the number 0 or 0.0 is false, and all other values are treated as true. In JavaScript, the empty string (""), null, undefined, NaN, +0, −0 and false are somet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type System
In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a ''type'' (for example, integer, floating point, string) to every '' term'' (a word, phrase, or other set of symbols). Usually the terms are various language constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term. Type systems formalize and enforce the otherwise implicit categories the programmer uses for algebraic data types, data structures, or other data types, such as "string", "array of float", "function returning boolean". Type systems are often specified as part of programming languages and built into interpreters and compilers, although the type system of a language can be extended by optional tools that perform added checks using the language's original type synta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lambda Calculus
In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computability, computation based on function Abstraction (computer science), abstraction and function application, application using variable Name binding, binding and Substitution (algebra), substitution. Untyped lambda calculus, the topic of this article, is a universal machine, a model of computation that can be used to simulate any Turing machine (and vice versa). It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. In 1936, Church found a formulation which was #History, logically consistent, and documented it in 1940. Lambda calculus consists of constructing #Lambda terms, lambda terms and performing #Reduction, reduction operations on them. A term is defined as any valid lambda calculus expression. In the simplest form of lambda calculus, terms are built using only the following rules: # x: A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]