HOME
*





Supersingular K3 Surface
In algebraic geometry, a supersingular K3 surface is a K3 surface over a field ''k'' of characteristic ''p'' > 0 such that the slopes of Frobenius on the crystalline cohomology ''H''2(''X'',''W''(''k'')) are all equal to 1. These have also been called Artin supersingular K3 surfaces. Supersingular K3 surfaces can be considered the most special and interesting of all K3 surfaces. Definitions and main results More generally, a smooth projective variety ''X'' over a field of characteristic ''p'' > 0 is called supersingular if all slopes of Frobenius on the crystalline cohomology ''H''a(''X'',''W''(''k'')) are equal to ''a''/2, for all ''a''. In particular, this gives the standard notion of a supersingular abelian variety. For a variety ''X'' over a finite field ''F''''q'', it is equivalent to say that the eigenvalues of Frobenius on the l-adic cohomology ''H''a(''X'',''Q''''l'') are equal to ''q''''a''/2 times roots of unity. It follows that any variety in positive characteristic who ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shioda Modular Surface
In mathematics, a Shioda modular surface is one of the elliptic surface In mathematics, an elliptic surface is a surface that has an elliptic fibration, in other words a proper morphism with connected fibers to an algebraic curve such that almost all fibers are smooth curves of genus 1. (Over an algebraically closed fi ...s studied by . References * * * Complex surfaces Algebraic surfaces {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compositio Mathematica
''Compositio Mathematica'' is a monthly peer-reviewed mathematics journal established by L.E.J. Brouwer in 1935. It is owned by the Foundation Compositio Mathematica, and since 2004 it has been published on behalf of the Foundation by the London Mathematical Society in partnership with Cambridge University Press. According to the ''Journal Citation Reports'', the journal has a 2020 2-year impact factor of 1.456 and a 2020 5-year impact factor of 1.696. The editors-in-chief are Jochen Heinloth, Bruno Klingler, Lenny Taelman, and Éric Vasserot. Early history The journal was established by L. E. J. Brouwer in response to his dismissal from ''Mathematische Annalen'' in 1928. An announcement of the new journal was made in a 1934 issue of the ''American Mathematical Monthly ''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isogeny
In mathematics, in particular, in algebraic geometry, an isogeny is a morphism of algebraic groups (also known as group varieties) that is surjective and has a finite kernel. If the groups are abelian varieties, then any morphism of the underlying algebraic varieties which is surjective with finite fibres is automatically an isogeny, provided that . Such an isogeny then provides a group homomorphism between the groups of -valued points of and , for any field over which is defined. The terms "isogeny" and "isogenous" come from the Greek word ισογενη-ς, meaning "equal in kind or nature". The term "isogeny" was introduced by Weil; before this, the term "isomorphism" was somewhat confusingly used for what is now called an isogeny. Case of abelian varieties For abelian varieties, such as elliptic curves, this notion can also be formulated as follows: Let ''E''1 and ''E''2 be abelian varieties of the same dimension over a field ''k''. An isogeny between ''E''1 and ''E' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abelian Surface
In mathematics, an abelian surface is a 2-dimensional abelian variety. One-dimensional complex tori are just elliptic curves and are all algebraic, but Riemann discovered that most complex tori of dimension 2 are not algebraic via the Riemann bilinear relations. Essentially, these are conditions on the parameter space of period matrices for complex tori which define an algebraic subvariety. This subvariety contains all of the points whose period matrices correspond to a period matrix of an abelian variety. The algebraic ones are called abelian surfaces and are exactly the 2-dimensional abelian varieties. Most of their theory is a special case of the theory of higher-dimensional tori or abelian varieties. Finding criteria for a complex torus of dimension 2 to be a product of two elliptic curves (up to isogeny) was a popular subject of study in the nineteenth century. Invariants: The plurigenera are all 1. The surface is diffeomorphic to ''S''1×''S''1×''S''1×''S''1 so the fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Resolution Of Singularities
In algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety ''V'' has a resolution, a non-singular variety ''W'' with a proper birational map ''W''→''V''. For varieties over fields of characteristic 0 this was proved in Hironaka (1964), while for varieties over fields of characteristic ''p'' it is an open problem in dimensions at least 4. Definitions Originally the problem of resolution of singularities was to find a nonsingular model for the function field of a variety ''X'', in other words a complete non-singular variety ''X′'' with the same function field. In practice it is more convenient to ask for a different condition as follows: a variety ''X'' has a resolution of singularities if we can find a non-singular variety ''X′'' and a proper birational map from ''X′'' to ''X''. The condition that the map is proper is needed to exclude trivial solutions, such as taking ''X′'' to be the subvariety of n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimal Model Program
In algebraic geometry, the minimal model program is part of the birational classification of algebraic varieties. Its goal is to construct a birational model of any complex projective variety which is as simple as possible. The subject has its origins in the classical birational geometry of surfaces studied by the Italian school, and is currently an active research area within algebraic geometry. Outline The basic idea of the theory is to simplify the birational classification of varieties by finding, in each birational equivalence class, a variety which is "as simple as possible". The precise meaning of this phrase has evolved with the development of the subject; originally for surfaces, it meant finding a smooth variety X for which any birational morphism f\colon X \to X' with a smooth surface X' is an isomorphism. In the modern formulation, the goal of the theory is as follows. Suppose we are given a projective variety X, which for simplicity is assumed non-singular. There a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


James S
James is a common English language surname and given name: *James (name), the typically masculine first name James * James (surname), various people with the last name James James or James City may also refer to: People * King James (other), various kings named James * Saint James (other) * James (musician) * James, brother of Jesus Places Canada * James Bay, a large body of water * James, Ontario United Kingdom * James College, a college of the University of York United States * James, Georgia, an unincorporated community * James, Iowa, an unincorporated community * James City, North Carolina * James City County, Virginia ** James City (Virginia Company) ** James City Shire * James City, Pennsylvania * St. James City, Florida Arts, entertainment, and media * ''James'' (2005 film), a Bollywood film * ''James'' (2008 film), an Irish short film * ''James'' (2022 film), an Indian Kannada-language film * James the Red Engine, a character in ''Thom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intersection Form (4-manifold)
In mathematics, the intersection form of an oriented compact 4-manifold is a special symmetric bilinear form on the 2nd (co)homology group of the 4-manifold. It reflects much of the topology of the 4-manifolds, including information on the existence of a smooth structure. Definition using intersection Let ''M'' be a closed 4-manifold (PL or smooth). Take a triangulation ''T'' of ''M''. Denote by T^* the dual cell subdivision. Represent classes a,b\in H_2(M;\Z/2\Z) by 2-cycles ''A'' and ''B'' modulo 2 viewed as unions of 2-simplices of ''T'' and of T^*, respectively. Define the intersection form modulo 2 :\cap_: H_2(M;\Z/2\Z) \times H_2(M;\Z/2\Z) \to \Z/2\Z by the formula :a\cap_ b = , A\cap B, \bmod2. This is well-defined because the intersection of a cycle and a boundary consists of an even number of points (by definition of a cycle and a boundary). If ''M'' is oriented, analogously (i.e. counting intersections with signs) one defines the intersection form on the 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discriminant
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry. The discriminant of the quadratic polynomial ax^2+bx+c is :b^2-4ac, the quantity which appears under the square root in the quadratic formula. If a\ne 0, this discriminant is zero if and only if the polynomial has a double root. In the case of real coefficients, it is positive if the polynomial has two distinct real roots, and negative if it has two distinct complex conjugate roots. Similarly, the discriminant of a cubic polynomial is zero if and only if the polynomial has a multiple root. In the case of a cubic with real coefficients, the discriminant is positive if the polynomial has three distinct real roots, and negati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Separable Extension
In field theory, a branch of algebra, an algebraic field extension E/F is called a separable extension if for every \alpha\in E, the minimal polynomial of \alpha over is a separable polynomial (i.e., its formal derivative is not the zero polynomial, or equivalently it has no repeated roots in any extension field).Isaacs, p. 281 There is also a more general definition that applies when is not necessarily algebraic over . An extension that is not separable is said to be ''inseparable''. Every algebraic extension of a field of characteristic zero is separable, and every algebraic extension of a finite field is separable.Isaacs, Theorem 18.11, p. 281 It follows that most extensions that are considered in mathematics are separable. Nevertheless, the concept of separability is important, as the existence of inseparable extensions is the main obstacle for extending many theorems proved in characteristic zero to non-zero characteristic. For example, the fundamental theorem of Galo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus ''any'' two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by , RP2, or P2(R), among other notations. There are many other projective planes, both infinite, such as the complex projective pla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]