HOME





Superintegrable Hamiltonian System
In mathematics, a superintegrable Hamiltonian system is a Hamiltonian system on a 2n-dimensional symplectic manifold for which the following conditions hold: (i) There exist k>n independent integrals F_i of motion. Their level surfaces (invariant submanifolds) form a fibered manifold F:Z\to N=F(Z) over a connected open subset N\subset\mathbb R^k. (ii) There exist smooth real functions s_ on N such that the Poisson bracket of integrals of motion reads \= s_\circ F. (iii) The matrix function s_ is of constant corank m=2n-k on N. If k=n, this is the case of a completely integrable Hamiltonian system. The Mishchenko-Fomenko theorem for superintegrable Hamiltonian systems generalizes the Liouville-Arnold theorem on action-angle coordinates of completely integrable Hamiltonian system as follows. Let invariant submanifolds of a superintegrable Hamiltonian system be connected compact and mutually diffeomorphic. Then the fibered manifold F is a fiber bundle in tori T^m. There exists a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Hamiltonian System
A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory. Overview Informally, a Hamiltonian system is a mathematical formalism developed by William Rowan Hamilton, Hamilton to describe the evolution equation, evolution equations of a physical system. The advantage of this description is that it gives important insights into the dynamics, even if the initial value problem cannot be solved analytically. One example is the Three-body problem, planetary movement of three bodies: while there is no closed-form solution to the general problem, Henri Poincaré, Poincaré showed for the first time that it exhibits deterministic chaos. Formally, a Hamiltonian system is a dynamical system characterised by the scalar function H(\bol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Symplectic Manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system. Motivation Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Poisson Manifold
In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics. A Poisson structure (or Poisson bracket) on a smooth manifold M is a function \: \mathcal^(M) \times \mathcal^(M) \to \mathcal^(M) on the vector space \mathcal^(M) of smooth functions on M , making it into a Lie algebra subject to a Leibniz rule (also known as a Poisson algebra). Poisson structures on manifolds were introduced by André Lichnerowicz in 1977 and are named after the French mathematician Siméon Denis Poisson, due to their early appearance in his works on analytical mechanics. Introduction From phase spaces of classical mechanics to symplectic and Poisson manifolds In classical mechanics, the phase space of a physical system consists of all the possible values of the position and of the momentu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Integrable System
In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, that its motion is confined to a submanifold of much smaller dimensionality than that of its phase space. Three features are often referred to as characterizing integrable systems: * the existence of a ''maximal'' set of conserved quantities (the usual defining property of complete integrability) * the existence of algebraic invariants, having a basis in algebraic geometry (a property known sometimes as algebraic integrability) * the explicit determination of solutions in an explicit functional form (not an intrinsic property, but something often referred to as solvability) Integrable systems may be seen as very different in qualitative character from more ''generic'' dynamical systems, which are more typically chaotic syste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Action-angle Coordinates
In classical mechanics, action-angle variables are a set of canonical coordinates that are useful in characterizing the nature of commuting flows in integrable systems when the conserved energy level set is compact, and the commuting flows are complete. Action-angle variables are also important in obtaining the frequencies of oscillatory or rotational motion without solving the equations of motion. They only exist, providing a key characterization of the dynamics, when the system is completely integrable, i.e., the number of independent Poisson commuting invariants is maximal and the conserved energy surface is compact. This is usually of practical calculational value when the Hamilton–Jacobi equation is completely separable, and the separation constants can be solved for, as functions on the phase space. Action-angle variables define a foliation by invariant Lagrangian tori because the flows induced by the Poisson commuting invariants remain within their joint level sets, while ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Fiber Bundle
In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a product space B \times F is defined using a continuous surjective map, \pi : E \to B, that in small regions of E behaves just like a projection from corresponding regions of B \times F to B. The map \pi, called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space E is known as the total space of the fiber bundle, B as the base space, and F the fiber. In the '' trivial'' case, E is just B \times F, and the map \pi is just the projection from the product space to the first factor. This is called a trivial bundle. Examples of non-trivial fiber bundles include the Möbius strip and Klein bottle, as well as nontrivial covering spaces. Fiber bundles, such as the tangent bundle of a manifol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Darboux's Theorem
In differential geometry, a field in mathematics, Darboux's theorem is a theorem providing a normal form for special classes of differential 1-forms, partially generalizing the Frobenius integration theorem. It is named after Jean Gaston Darboux who established it as the solution of the Pfaff problem. It is a foundational result in several fields, the chief among them being symplectic geometry. Indeed, one of its many consequences is that any two symplectic manifolds of the same dimension are locally symplectomorphic to one another. That is, every 2n -dimensional symplectic manifold can be made to look locally like the linear symplectic space \mathbb^n with its canonical symplectic form. There is also an analogous consequence of the theorem applied to contact geometry. Statement Suppose that \theta is a differential 1-form on an ''n ''-dimensional manifold, such that \mathrm \theta has constant rank ''p ''. Then * if \theta \wedge \left(\mathrm\theta\right)^p = 0 e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Integrable System
In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, that its motion is confined to a submanifold of much smaller dimensionality than that of its phase space. Three features are often referred to as characterizing integrable systems: * the existence of a ''maximal'' set of conserved quantities (the usual defining property of complete integrability) * the existence of algebraic invariants, having a basis in algebraic geometry (a property known sometimes as algebraic integrability) * the explicit determination of solutions in an explicit functional form (not an intrinsic property, but something often referred to as solvability) Integrable systems may be seen as very different in qualitative character from more ''generic'' dynamical systems, which are more typically chaotic syste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Action-angle Coordinates
In classical mechanics, action-angle variables are a set of canonical coordinates that are useful in characterizing the nature of commuting flows in integrable systems when the conserved energy level set is compact, and the commuting flows are complete. Action-angle variables are also important in obtaining the frequencies of oscillatory or rotational motion without solving the equations of motion. They only exist, providing a key characterization of the dynamics, when the system is completely integrable, i.e., the number of independent Poisson commuting invariants is maximal and the conserved energy surface is compact. This is usually of practical calculational value when the Hamilton–Jacobi equation is completely separable, and the separation constants can be solved for, as functions on the phase space. Action-angle variables define a foliation by invariant Lagrangian tori because the flows induced by the Poisson commuting invariants remain within their joint level sets, while ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Nambu Mechanics
In mathematics, Nambu mechanics is a generalization of Hamiltonian mechanics involving multiple Hamiltonians. Recall that Hamiltonian mechanics is based upon the flows generated by a smooth Hamiltonian over a symplectic manifold. The flows are symplectomorphisms and hence obey Liouville's theorem. This was soon generalized to flows generated by a Hamiltonian over a Poisson manifold. In 1973, Yoichiro Nambu suggested a generalization involving Nambu–Poisson manifolds with more than one Hamiltonian. In 1994, Leon Takhtajan revisited Nambu dynamics. Nambu bracket Specifically, consider a differential manifold , for some integer ; one has a smooth -linear map from copies of to itself, such that it is completely antisymmetric: the Nambu bracket, :\ : C^\infty(M) \times \cdots C^\infty(M) \rightarrow C^\infty(M), which acts as a derivation :\ = \g + f\, whence the Filippov Identities (FI) (evocative of the Jacobi identities, but unlike them, ''not'' antisymmetriz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Laplace–Runge–Lenz Vector
In classical mechanics, the Laplace–Runge–Lenz vector (LRL vector) is a vector (geometric), vector used chiefly to describe the shape and orientation of the orbit (celestial mechanics), orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For Two-body problem, two bodies interacting by Newton's law of universal gravitation, Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be ''Conservation law, conserved''. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square law, inverse square of the distance between them; such problems are called Kepler problems. Thus the hydrogen atom is a Kepler problem, since it comprises two charged particles interacting by Coulomb's law of electrostatics, another inverse-square central force ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]