HOME





String Kernel
In machine learning and data mining, a string kernel is a kernel function that operates on strings, i.e. finite sequences of symbols that need not be of the same length. String kernels can be intuitively understood as functions measuring the similarity of pairs of strings: the more similar two strings ''a'' and ''b'' are, the higher the value of a string kernel ''K''(''a'', ''b'') will be. Using string kernels with kernelized learning algorithms such as support vector machines allow such algorithms to work with strings, without having to translate these to fixed-length, real-valued feature vectors. String kernels are used in domains where sequence data are to be clustered or classified, e.g. in text mining and gene analysis. Informal introduction Suppose one wants to compare some text passages automatically and indicate their relative similarity. For many applications, it might be sufficient to find some keywords which match exactly. One example where exact matching is not alwa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Machine Learning
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F.,Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning IEEE Transactions on Vehicular Technology, 2020. A subset of machine learning is closely related to computational statistics, which focuses on making pred ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Association For Computing Machinery
The Association for Computing Machinery (ACM) is a US-based international learned society for computing. It was founded in 1947 and is the world's largest scientific and educational computing society. The ACM is a non-profit professional membership group, claiming nearly 110,000 student and professional members . Its headquarters are in New York City. The ACM is an umbrella organization for academic and scholarly interests in computer science ( informatics). Its motto is "Advancing Computing as a Science & Profession". History In 1947, a notice was sent to various people: On January 10, 1947, at the Symposium on Large-Scale Digital Calculating Machinery at the Harvard computation Laboratory, Professor Samuel H. Caldwell of Massachusetts Institute of Technology spoke of the need for an association of those interested in computing machinery, and of the need for communication between them. ..After making some inquiries during May and June, we believe there is ample interest to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kernel Methods For Machine Learning
Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learning * Kernelization, a technique for designing efficient algorithms ** Kernel, a routine that is executed in a vectorized loop, for example in general-purpose computing on graphics processing units *KERNAL, the Commodore operating system Mathematics Objects * Kernel (algebra), a general concept that includes: ** Kernel (linear algebra) or null space, a set of vectors mapped to the zero vector ** Kernel (category theory), a generalization of the kernel of a homomorphism ** Kernel (set theory), an equivalence relation: partition by image under a function ** Difference kernel, a binary equalizer: the kernel of the difference of two functions Functions * Kernel (geometry), the set of points within a polygon from which the whole polygon boun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithms On Strings
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm can be expressed within a finite amount of space and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation
An approximation is anything that is intentionally similar but not exactly equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very near'' and the prefix ''ad-'' (''ad-'' before ''p'' becomes ap- by assimilation) meaning ''to''. Words like ''approximate'', ''approximately'' and ''approximation'' are used especially in technical or scientific contexts. In everyday English, words such as ''roughly'' or ''around'' are used with a similar meaning. It is often found abbreviated as ''approx.'' The term can be applied to various properties (e.g., value, quantity, image, description) that are nearly, but not exactly correct; similar, but not exactly the same (e.g., the approximate time was 10 o'clock). Although approximation is most often applied to numbers, it is also frequently applied to such things as mathematical functions, shapes, and physical laws. In science, approximation can refer to u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kernel Methods
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). The general task of pattern analysis is to find and study general types of relations (for example clusters, rankings, principal components, correlations, classifications) in datasets. For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified ''feature map'': in contrast, kernel methods require only a user-specified ''kernel'', i.e., a similarity function over all pairs of data points computed using Inner products. The feature map in kernel machines is infinite dimensional but only requires a finite dimensional matrix from user-input according to the Representer theorem. Kernel machines are slow to compute for datasets larger than a couple of thousand examples without parallel processing. Kernel methods owe their name to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multiindices
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices. Definition and basic properties An ''n''-dimensional multi-index is an ''n''-tuple :\alpha = (\alpha_1, \alpha_2,\ldots,\alpha_n) of non-negative integers (i.e. an element of the ''n''-dimensional set of natural numbers, denoted \mathbb^n_0). For multi-indices \alpha, \beta \in \mathbb^n_0 and x = (x_1, x_2, \ldots, x_n) \in \mathbb^n one defines: ;Componentwise sum and difference :\alpha \pm \beta= (\alpha_1 \pm \beta_1,\,\alpha_2 \pm \beta_2, \ldots, \,\alpha_n \pm \beta_n) ;Partial order :\alpha \le \beta \quad \Leftrightarrow \quad \alpha_i \le \beta_i \quad \forall\,i\in\ ;Sum of components (absolute value) :, \alpha , = \alpha_1 + \alpha_2 + \cdots + \alpha_n ;Factorial :\alpha ! = \alpha_1! \cdot \alpha_2! \cdots \alpha_n! ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alphabet (computer Science)
In formal language theory, an alphabet is a non-empty set of symbols/glyphs, typically thought of as representing letters, characters, or digits but among other possibilities the "symbols" could also be a set of phonemes (sound units). Alphabets in this technical sense of a set are used in a diverse range of fields including logic, mathematics, computer science, and linguistics. An alphabet may have any cardinality ("size") and depending on its purpose maybe be finite (e.g., the alphabet of letters "a" through "z"), countable (e.g., \), or even uncountable (e.g., \). Strings, also known as "words", over an alphabet are defined as a sequence of the symbols from the alphabet set. For example, the alphabet of lowercase letters "a" through "z" can be used to form English words like "iceberg" while the alphabet of both upper and lower case letters can also be used to form proper names like "Wikipedia". A common alphabet is , the binary alphabet, and a "00101111" is an example of a bi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Machine Learning Research
The ''Journal of Machine Learning Research'' is a peer-reviewed open access scientific journal covering machine learning. It was established in 2000 and the first editor-in-chief was Leslie Kaelbling Leslie Pack Kaelbling is an American roboticist and the Panasonic Professor of Computer Science and Engineering at the Massachusetts Institute of Technology. She is widely recognized for adapting partially observable Markov decision process from .... The current editors-in-chief are Francis Bach ( Inria) and David Blei ( Columbia University). History The journal was established as an open-access alternative to the journal ''Machine Learning''. In 2001, forty editorial board members of ''Machine Learning'' resigned, saying that in the era of the Internet, it was detrimental for researchers to continue publishing their papers in expensive journals with pay-access archives. The open access model employed by the ''Journal of Machine Learning Research'' allows authors to publish ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inner Product Space
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in \langle a, b \rangle. Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or ''scalar product'' of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898. An inner product naturally induces an associated norm, (denoted , x, and , y, in the picture ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mercer's Theorem
In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in , is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used to characterize a symmetric positive semi-definite kernel. Introduction To explain Mercer's theorem, we first consider an important special case; see below for a more general formulation. A ''kernel'', in this context, is a symmetric continuous function : K: ,b\times ,b\rightarrow \mathbb where symmetric means that K(x,y) = K(y,x) for all x,y \in ,b/math>. ''K'' is said to be ''non-negative definite'' (or positive semidefinite) if and only if : \sum_^n\sum_^n K(x_i, x_j) c_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Positive-semidefinite Function
In mathematics, a positive-definite function is, depending on the context, either of two types of function. Most common usage A ''positive-definite function'' of a real variable ''x'' is a complex-valued function f: \mathbb \to \mathbb such that for any real numbers ''x''1, …, ''x''''n'' the ''n'' × ''n'' matrix : A = \left(a_\right)_^n~, \quad a_ = f(x_i - x_j) is positive ''semi-''definite (which requires ''A'' to be Hermitian; therefore ''f''(−''x'') is the complex conjugate of ''f''(''x'')). In particular, it is necessary (but not sufficient) that : f(0) \geq 0~, \quad , f(x), \leq f(0) (these inequalities follow from the condition for ''n'' = 1, 2.) A function is ''negative semi-definite'' if the inequality is reversed. A function is ''definite'' if the weak inequality is replaced with a strong ( 0). Examples If (X, \langle \cdot, \cdot \rangle) is a real inner product space, then g_y \colon X \to \mathbb, x \mapsto \exp(i \langle y, x \r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]