Standard Electrode Potential
In electrochemistry, standard electrode potential E^\ominus, or E^\ominus_, is the electrode potential (a measure of the reducing power of any element or compound) which the IUPAC "Gold Book" defines as ''"the value of the standard emf ( electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode"''. Background The basis for an electrochemical cell, such as the galvanic cell, is always a redox reaction which can be broken down into two half-reactions: oxidation at anode (loss of electron) and reduction at cathode (gain of electron). Electricity is produced due to the difference of electric potential between the individual potentials of the two metal electrodes with respect to the electrolyte. Although the overall potential of a cell can be measured, there is no simple way to accurately measure the electrode/electrolyte potentials in isolation. The electric potential also varies with temperat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bipolar Electrochemistry Scheme
Bipolar may refer to: Astronomy * Bipolar nebula, a distinctive nebular formation * Bipolar outflow, two continuous flows of gas from the poles of a star Mathematics * Bipolar coordinates, a two-dimensional orthogonal coordinate system * Bipolar set, a derivative of a polar set * Bipolar theorem, a theorem in convex analysis which provides necessary and sufficient conditions for a cone to be equal to its bipolar Medicine * Bipolar disorder, a mental disorder that causes periods of depression and periods of elevated mood ** Bipolar I disorder, a bipolar spectrum disorder characterized by the occurrence of at least one manic or mixed episode ** Bipolar II disorder, a bipolar spectrum disorder characterized by at least one episode of hypomania and at least one episode of major depression ** Bipolar disorder not otherwise specified, a diagnosis for bipolar disorder when it does not fall within the other established sub-types * Bipolar neuron, a type of neuron which has two extensio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Standard Hydrogen Electrode
In electrochemistry, the standard hydrogen electrode (abbreviated SHE), is a redox electrode which forms the basis of the thermodynamic scale of oxidation-reduction potentials. Its absolute electrode potential is estimated to be at 25 °C, but to form a basis for comparison with all other electrochemical reactions, hydrogen's standard electrode potential () is declared to be zero volts at any temperature. Potentials of all other electrodes are compared with that of the standard hydrogen electrode at the same temperature. Nernst equation for SHE The hydrogen electrode is based on the redox half cell corresponding to the reduction of two hydrated protons, into one gaseous hydrogen molecule, General equation for a reduction reaction: : \underset + z\ce\ \underset The reaction quotient () of the half-reaction is the ratio between the chemical activities () of the reduced form (the reductant, ) and the oxidized form (the oxidant, ). : Q_r = \frac Considering the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Standard Electrode Potential (data Page)
The data below tabulates standard electrode potentials (''E''°), in volts relative to the standard hydrogen electrode (SHE), at: * Temperature ; * Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species; * Unit activity for each solvent and pure solid or liquid species; and * Absolute partial pressure for each gaseous reagent — the convention in most literature data but not the current standard state (100 kPa). Variations from these ideal conditions affect measured voltage via the Nernst equation. Electrode potentials of successive elementary half-reactions cannot be directly added. However, the corresponding Gibbs free energy changes (∆''G''°) must satisfy :, where electrons are transferred, and the Faraday constant is the conversion factor describing Coulombs transferred per mole electrons. Those Gibbs free energy changes can be added. For example, from , the energy to form one neutral atom of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electrolytic Cell
An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would otherwise not occur. The external energy source is a voltage applied between the cell's two electrodes; an anode (positively charged electrode) and a cathode (negatively charged electrode), which are immersed in an electrolyte solution. This is in contrast to a galvanic cell, which itself is a source of electrical energy and the foundation of a battery. The net reaction taking place in an electrolytic cell is a non-spontaneous reaction (reverse of a spontaneous reaction), i.e., the Gibbs free energy is +ve, while the net reaction taking place in a galvanic cell is a spontaneous reaction, i.e., the Gibbs free energy is - ve. Principles In an electrolytic cell, a current passes through the cell by an external voltage, causing a non-spontaneous chemical reaction to proceed. In a galvanic cell, the progress of a spontaneous chemical reacti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Faraday Constant
In physical chemistry, the Faraday constant (symbol , sometimes stylized as ℱ) is a physical constant defined as the quotient of the total electric charge () by the amount () of elementary charge carriers in any given sample of matter: it is expressed in units of coulombs per mole (C/mol). As such, it represents the " molar elementary charge", that is, the electric charge of one mole of elementary carriers (e.g., protons). It is named after the English scientist Michael Faraday. Since the 2019 revision of the SI, the Faraday constant has an exactly defined value, the product of the elementary charge (, in coulombs) and the Avogadro constant (, in reciprocal moles): : Derivation The Faraday constant can be thought of as the proportionality factor between the charge in coulombs (used in physics and in practical electrical measurements) and the amount of substance in moles (used in chemistry), and is therefore of particular use in electrochemistry, particularly in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mole (unit)
The mole (symbol mol) is a unit of measurement, the base unit in the International System of Units (SI) for ''amount of substance'', an SI base quantity proportional to the number of elementary entities of a substance. One mole is an aggregate of exactly elementary entities (approximately 602 sextillion or 602 billion times a trillion), which can be atoms, molecules, ions, ion pairs, or other particles. The number of particles in a mole is the Avogadro number (symbol ) and the numerical value of the '' Avogadro constant'' (symbol ) expressed in mol−1. The relationship between the mole, Avogadro number, and Avogadro constant can be expressed in the following equation:1\text = \frac = \frac The current SI value of the mole is based on the historical definition of the mole as the amount of substance that corresponds to the number of atoms in 12 grams of 12C, which made the molar mass of a compound in grams per mole, numerically equal to the average molecular mass or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gibbs Free Energy
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol is a thermodynamic potential that can be used to calculate the maximum amount of Work (thermodynamics), work, other than Work (thermodynamics)#Pressure–volume work, pressure–volume work, that may be performed by a closed system, thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions. The Gibbs free energy is expressed as G(p,T) = U + pV - TS = H - TS where: * U is the internal energy of the system * H is the enthalpy of the system * S is the entropy of the system * T is the temperature of the system * V is the volume of the system * p is the pressure of the system (which must be equal to that of the surroundings for mechanical equilibrium). The Gibbs free energy change (, measured in joules in International System of Units, SI) is the ''maximum'' amount of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spontaneous Process
In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamically stable energy state (closer to thermodynamic equilibrium). 0 and Δ''H'' 0 and Δ''H'' > 0, the process will be spontaneous at high temperatures and non-spontaneous at low temperatures. * When Δ''S'' \left, \Delta S_\text{system}\ In many processes, the increase in entropy of the surroundings is accomplished via heat transfer from the system to the surroundings (i.e. an exothermic process). See also * Endergonic reaction reactions which are not spontaneous at standard temperature, pressure, and concentrations. * Diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Redox
Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state. The oxidation and reduction processes occur simultaneously in the chemical reaction. There are two classes of redox reactions: * Electron transfer, Electron-transfer – Only one (usually) electron flows from the atom, ion, or molecule being oxidized to the atom, ion, or molecule that is reduced. This type of redox reaction is often discussed in terms of redox couples and electrode potentials. * Atom transfer – An atom transfers from one Substrate (chemistry), substrate to another. For example, in the rusting of iron, the oxidation state of iron atoms increases as the iron converts to an oxide, and simultaneously, the oxidation state of oxygen decreases as it accepts electrons r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reducing Agent
In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are common reducing agents include hydrogen, carbon monoxide, the alkali metals, formic acid, oxalic acid, and sulfite compounds. In their pre-reaction states, reducers have extra electrons (that is, they are by themselves reduced) and oxidizers lack electrons (that is, they are by themselves oxidized). This is commonly expressed in terms of their oxidation states. An agent's oxidation state describes its degree of loss of electrons, where the higher the oxidation state then the fewer electrons it has. So initially, prior to the reaction, a reducing agent is typically in one of its lower possible oxidation states; its oxidation state increases during the reaction while that of the oxidizer decreases. Thus in a redox reaction, the agent whose oxidation state increases, that "loses/Electron d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oxidizing Agent
An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ''electron donor''). In other words, an oxidizer is any substance that oxidizes another substance. The oxidation state, which describes the degree of loss of electrons, of the oxidizer decreases while that of the reductant increases; this is expressed by saying that oxidizers "undergo reduction" and "are reduced" while reducers "undergo oxidation" and "are oxidized". Common oxidizing agents are oxygen, hydrogen peroxide, and the halogens. In one sense, an oxidizing agent is a chemical species that undergoes a chemical reaction in which it gains one or more electrons. In that sense, it is one component in an oxidation–reduction (redox) reaction. In the second sense, an oxidizing agent is a chemical species that transfers electronegative atoms, usually oxygen, t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up quark, up and down quark, down quarks. Electrons are extremely lightweight particles that orbit the positively charged atomic nucleus, nucleus of atoms. Their negative charge is balanced by the positive charge of protons in the nucleus, giving atoms their overall electric charge#Charge neutrality, neutral charge. Ordinary matter is composed of atoms, each consisting of a positively charged nucleus surrounded by a number of orbiting electrons equal to the number of protons. The configuration and energy levels of these orbiting electrons determine the chemical properties of an atom. Electrons are bound to the nucleus to different degrees. The outermost or valence electron, valence electrons are the least tightly bound and are responsible for th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |