HOME



picture info

Stall (fluid Dynamics)
In fluid dynamics, a stall is a reduction in the lift coefficient generated by a foil as angle of attack exceeds its critical value.Crane, Dale: ''Dictionary of Aeronautical Terms, third edition'', p. 486. Aviation Supplies & Academics, 1997. The critical angle of attack is typically about 15°, but it may vary significantly depending on the fluid, foil – including its shape, size, and finish – and Reynolds number. Stalls in fixed-wing aircraft are often experienced as a sudden reduction in lift. It may be caused either by the pilot increasing the wing's angle of attack or by a decrease in the critical angle of attack. The former may be due to slowing down (below stall speed), the latter by accretion of ice on the wings (especially if the ice is rough). A stall does not mean that the engine(s) have stopped working, or that the aircraft has stopped moving—the effect is the same even in an unpowered glider aircraft. Vectored thrust in aircraft is used to maintain al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aviation
Aviation includes the activities surrounding mechanical flight and the aircraft industry. ''Aircraft'' include fixed-wing and rotary-wing types, morphable wings, wing-less lifting bodies, as well as lighter-than-air aircraft such as hot air balloons and airships. Aviation began in the 18th century with the development of the hot air balloon, an apparatus capable of atmospheric displacement through buoyancy. Clément Ader built the "Ader Éole" in France and made an uncontrolled, powered hop in 1890. This was the first powered aircraft, although it did not achieve controlled flight. Some of the most significant advancements in aviation technology came with the controlled gliding flying of Otto Lilienthal in 1896. A major leap followed with the construction of the '' Wright Flyer'', the first powered airplane by the Wright brothers in the early 1900s. Since that time, aviation has been technologically revolutionized by the introduction of the jet engine which enabl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Airspeed
In aviation, airspeed is the speed of an aircraft relative to the air it is flying through (which itself is usually moving relative to the ground due to wind). In contrast, the ground speed is the speed of an aircraft with respect to the surface of the Earth (whether over land or presumed-stationary water). It is difficult to measure the exact airspeed of the aircraft (true airspeed), but other measures of airspeed, such as indicated airspeed and Mach number give useful information about the capabilities and limitations of airplane performance. The common measures of airspeed are: * Indicated airspeed (IAS), what is read on an airspeed gauge connected to a pitot-static system. * Calibrated airspeed (CAS), indicated airspeed adjusted for pitot system position and installation error. * True airspeed (TAS) is the actual speed the airplane is moving through the air. When combined with aircraft direction, wind speed and direction, it can be used to calculate ground speed and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wind Tunnel
A wind tunnel is "an apparatus for producing a controlled stream of air for conducting aerodynamic experiments". The experiment is conducted in the test section of the wind tunnel and a complete tunnel configuration includes air ducting to and from the test section and a device for keeping the air in motion, such as a fan. Wind tunnel uses include assessing the effects of air on an aircraft in flight or a ground vehicle moving on land, and measuring the effect of wind on Building, buildings and bridges. Wind tunnel test sections range in size from less than a foot across, to over , and with air speeds from a light breeze to hypersonic. The earliest wind tunnels were invented towards the end of the 19th century, in the early days of aeronautical research, as part of the effort to develop heavier-than-air flying machines. The wind tunnel reversed the usual situation. Instead of the air standing still and an aircraft moving, an object would be held still and the air moved around it. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Camber (aerodynamics)
In aeronautics and aeronautical engineering, camber is the asymmetry between the two acting surfaces of an airfoil, with the top surface of a wing (or correspondingly the front surface of a propeller blade) commonly being more convex (positive camber). An airfoil that is not cambered is called a ''symmetric airfoil''. The benefits of cambering were discovered and first utilized by George Cayley in the early 19th century. Overview Camber is usually designed into an airfoil to raise its maximum lift coefficient CLmax. This minimizes the Stall (flight), stalling speed of aircraft using the airfoil. An aircraft with wings using a cambered airfoil will have a lower stalling speed than an aircraft with a similar wing loading and wings using a symmetric airfoil. One recent cambered design is called the supercritical airfoil. It is used for near-supersonic flight and produces a higher lift-to-drag ratio at near supersonic flight than traditional airfoils. Supercritical airfoils employ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chord (aircraft)
In aeronautics, the chord is an imaginary straight line segment joining the leading edge and trailing edge of an aerofoil cross section parallel to the direction of the airflow. The chord length is the distance between the trailing edge and the leading edge. L. J. Clancy (1975), ''Aerodynamics'', Section 5.2, Pitman Publishing Limited, London. The point on the leading edge used to define the main chord may be the surface point of minimum radius. p.18 For a turbine aerofoil, the chord may be defined by the line between points where the front and rear of a 2-dimensional blade section would touch a flat surface when laid convex-side up. The wing, horizontal stabilizer, vertical stabilizer and propeller/rotor blades of an aircraft are all based on aerofoil sections, and the term ''chord'' or ''chord length'' is also used to describe their width. The chord of a wing, stabilizer and propeller is determined by measuring the distance between leading and trailing edges in the direc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lift Curve
Lift or LIFT may refer to: Physical devices * Elevator, or lift, a device used for raising and lowering people or goods ** Paternoster lift, a type of lift using a continuous chain of cars which do not stop ** Patient lift, or Hoyer lift, mobile lift, ceiling lift, a lift to assist a caregiver for a disabled patient ** Rack lift, a type of elevator ** Ski lift, an aerial or surface lift for uphill transport ** Space elevator, a hypothetical structure for transporting material from a planet's surface into outer space ** Wheelchair lift or platform lift, a powered device to assist a person in a wheelchair * Forklift, a powered industrial truck used to lift and move materials short distances * Scissor lift, a type of aerial work platform * Body lift, an adaptation (of fixed height) to lift the automobile body from the frame * Suspension lift, a modification raising the suspension of the automobile * Stairlift, a mechanical device to help people with disabilities get up sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Autorotation (fixed-wing Aircraft)
For fixed-wing aircraft, autorotation is the tendency of an aircraft in or near a stall to roll spontaneously to the right or left, leading to a spin (a state of continuous autorotation).Clancy, L.J., ''Aerodynamics'', Sections 16.48 and 16.49 Details When the angle of attack is less than the stalling angle, any increase in angle of attack causes an increase in lift coefficient that causes the wing to rise. As the wing rises the angle of attack and lift coefficient decrease which tend to restore the wing to its original angle of attack. Conversely any decrease in angle of attack causes a decrease in lift coefficient which causes the wing to descend. As the wing descends, the angle of attack and lift coefficient increase which tends to restore the wing to its original angle of attack. For this reason the angle of attack is stable when it is less than the stalling angle.Stinton, Darryl, ''Flying Qualities and Flight Testing of The Aeroplane'', Chapter 12 (p.517) The aircr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spin (aerodynamics)
In flight dynamics (fixed-wing aircraft), flight dynamics a spin is a special category of Stall (fluid dynamics), stall resulting in Autorotation (fixed-wing aircraft), autorotation (uncommanded roll) about the aircraft's longitudinal axis and a shallow, rotating, downward path approximately centred on a vertical axis. Spins can be entered intentionally or unintentionally, from any flight attitude if the aircraft has sufficient Yaw axis, yaw while at the stall point. In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its Lift (force), lift and Drag (physics), drag, are different. Either situation causes the aircraft to autorotate toward the stalled wing due to its higher drag and loss of lift. Spins are characterized by high angle of attack, an airspeed below the stall on at least one wing and a shallow descent. Recovery and avoiding a cr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flow Separation
In fluid dynamics, flow separation or boundary layer separation is the detachment of a boundary layer from a surface into a wake. A boundary layer exists whenever there is relative movement between a fluid and a solid surface with viscous forces present in the layer of fluid close to the surface. The flow can be externally, around a body, or internally, in an enclosed passage. Boundary layers can be either laminar or turbulent. A reasonable assessment of whether the boundary layer will be laminar or turbulent can be made by calculating the Reynolds number of the local flow conditions. Separation occurs in flow that is slowing down, with pressure increasing, after passing the thickest part of a streamline body or passing through a widening passage, for example. Flowing against an increasing pressure is known as flowing in an adverse pressure gradient. The boundary layer separates when it has travelled far enough in an adverse pressure gradient that the speed of the bounda ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relative Wind
In aeronautics, the relative wind is the direction of movement of the atmosphere relative to an aircraft or an airfoil. It is opposite to the direction of movement of the aircraft or airfoil relative to the atmosphere. Close to any point on the surface of an aircraft or airfoil, the air is moving parallel to the surface; but at a great distance from the aircraft or airfoil, the movement of the air can be represented by a single vector. This vector is the relative wind or the ''free stream velocity vector''.Clancy, L.J. (1975), ''Aerodynamics'', Section 5.2, Pitman Publishing Limited, London The angle between the chord line of an airfoil and the relative wind defines the angle of attack. The relative wind is of great importance to pilots because exceeding the critical angle of attack will result in a stall, regardless of airspeed. In freefall Relative wind is also used to describe the airflow relative to an object in freefall through an atmosphere, such as that of a person's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aspect Ratio (aeronautics)
In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio.Kermode, A.C. (1972), ''Mechanics of Flight'', Chapter 3, (p.103, eighth edition), Pitman Publishing Limited, London Aspect ratio and other features of the planform are often used to predict the aerodynamic efficiency of a wing because the lift-to-drag ratio increases with aspect ratio, improving the fuel economy in powered airplanes and the gliding angle of sailplanes. Definition The aspect ratio \text is the ratio of the square of the wingspan b to the projected wing area S, which is equal to the ratio of the wingspan b to the standard mean chord \text: \text \equiv \frac = \frac Mechanism As a useful simplification, an airplane in flight can be imagined to affect a cylinder of air with a diameter equal to the wing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]