Stability (learning Theory)
Stability, also known as algorithmic stability, is a notion in computational learning theory of how a machine learning algorithm output is changed with small perturbations to its inputs. A stable learning algorithm is one for which the prediction does not change much when the training data is modified slightly. For instance, consider a machine learning algorithm that is being trained to recognize handwritten letters of the alphabet, using 1000 examples of handwritten letters and their labels ("A" to "Z") as a training set. One way to modify this training set is to leave out an example, so that only 999 examples of handwritten letters and their labels are available. A stable learning algorithm would produce a similar classifier with both the 1000-element and 999-element training sets. Stability can be studied for many types of learning problems, from language learning to inverse problems in physics and engineering, as it is a property of the learning process rather than the type ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computational Learning Theory
In computer science, computational learning theory (or just learning theory) is a subfield of artificial intelligence devoted to studying the design and analysis of machine learning algorithms. Overview Theoretical results in machine learning mainly deal with a type of inductive learning called supervised learning. In supervised learning, an algorithm is given samples that are labeled in some useful way. For example, the samples might be descriptions of mushrooms, and the labels could be whether or not the mushrooms are edible. The algorithm takes these previously labeled samples and uses them to induce a classifier. This classifier is a function that assigns labels to samples, including samples that have not been seen previously by the algorithm. The goal of the supervised learning algorithm is to optimize some measure of performance such as minimizing the number of mistakes made on new samples. In addition to performance bounds, computational learning theory studies the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vladimir Vapnik
Vladimir Naumovich Vapnik (; born 6 December 1936) is a statistician, researcher, and academic. He is one of the main developers of the Vapnik–Chervonenkis theory of statistical learning and the co-inventor of the support-vector machine method and support-vector clustering algorithms. Early life and education Vladimir Vapnik was born to a Jewish family in the Soviet Union. He received his master's degree in mathematics from the Uzbek State University, Samarkand, Uzbek SSR in 1958 and Ph.D in statistics at the Institute of Control Sciences, Moscow in 1964. He worked at this institute from 1961 to 1990 and became Head of the Computer Science Research Department. Academic career At the end of 1990, Vladimir Vapnik moved to the USA and joined the Adaptive Systems Research Department at AT&T Bell Labs in Holmdel, New Jersey. While at AT&T, Vapnik and his colleagues did work on the support-vector machine (SVM), which he also worked on much earlier before moving to the USA. They de ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regularization (machine Learning)
In mathematics, statistics, finance, and computer science, particularly in machine learning and inverse problems, regularization is a process that converts the answer to a problem to a simpler one. It is often used in solving ill-posed problems or to prevent overfitting. Although regularization procedures can be divided in many ways, the following delineation is particularly helpful: * Explicit regularization is regularization whenever one explicitly adds a term to the optimization problem. These terms could be priors, penalties, or constraints. Explicit regularization is commonly employed with ill-posed optimization problems. The regularization term, or penalty, imposes a cost on the optimization function to make the optimal solution unique. * Implicit regularization is all other forms of regularization. This includes, for example, early stopping, using a robust loss function, and discarding outliers. Implicit regularization is essentially ubiquitous in modern machine learnin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Support Vector Machine
In machine learning, support vector machines (SVMs, also support vector networks) are supervised max-margin models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories, SVMs are one of the most studied models, being based on statistical learning frameworks of VC theory proposed by Vapnik (1982, 1995) and Chervonenkis (1974). In addition to performing linear classification, SVMs can efficiently perform non-linear classification using the ''kernel trick'', representing the data only through a set of pairwise similarity comparisons between the original data points using a kernel function, which transforms them into coordinates in a higher-dimensional feature space. Thus, SVMs use the kernel trick to implicitly map their inputs into high-dimensional feature spaces, where linear classification can be performed. Being max-margin models, SVMs are resilient to noisy data (e.g., misclassified examples). ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Regression
In statistics, linear regression is a statistical model, model that estimates the relationship between a Scalar (mathematics), scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A model with exactly one explanatory variable is a ''simple linear regression''; a model with two or more explanatory variables is a multiple linear regression. This term is distinct from multivariate linear regression, which predicts multiple correlated dependent variables rather than a single dependent variable. In linear regression, the relationships are modeled using linear predictor functions whose unknown model parameters are estimation theory, estimated from the data. Most commonly, the conditional mean of the response given the values of the explanatory variables (or predictors) is assumed to be an affine function of those values; less commonly, the conditional median or some other quantile is used. Like all forms of regression analysis, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dana Ron
Dana Ron Goldreich (; born 1964) is a computer scientist, a professor of electrical engineering at the Tel Aviv University, Israel. Prof. Ron is one of the pioneers of research in property testing, and a leading researcher in that area. Professional career Dana Ron obtained her B.A. (1987) and M.A. (1989) in computer science from the Hebrew University in Jerusalem. Her Ph.D. (1995), also from the Hebrew University, was in the area of machine learning. Between the years 1995-97 she was an NSF post-doctoral fellow at the Massachusetts Institute of Technology (MIT). She was a Bunting fellow in 1997/8, and the Radcliffe fellow at Harvard University in 2003/4. Her research interests include sublinear-time algorithms (in particular property testing), randomized algorithms, and computational learning theory. She is married to Oded Goldreich, who is also a computer scientist at the Weizmann Institute, and has collaborated with Goldreich on approximation algorithm In computer science ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Andrey Nikolayevich Tikhonov
Andrey Nikolayevich Tikhonov (; 17 October 1906 – 7 October 1993) was a leading Soviet Russian mathematician and geophysicist known for important contributions to topology, functional analysis, mathematical physics, and ill-posed problems. He was also one of the inventors of the magnetotellurics method in geophysics. Other transliterations of his surname include "Tychonoff", "Tychonov", "Tihonov", "Tichonov". Biography Born in Gzhatsk, he studied at the Moscow State University where he received a Ph.D. in 1927 under the direction of Pavel Sergeevich Alexandrov. In 1933 he was appointed as a professor at Moscow State University. He became a corresponding member of the USSR Academy of Sciences on 29 January 1939 and a full member of the USSR Academy of Sciences on 1 July 1966. Research work Tikhonov worked in a number of different fields in mathematics. He made important contributions to topology, functional analysis, mathematical physics, and certain classes of ill- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sensitivity Analysis
Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system (numerical or otherwise) can be divided and allocated to different sources of uncertainty in its inputs. This involves estimating sensitivity indices that quantify the influence of an input or group of inputs on the output. A related practice is uncertainty analysis, which has a greater focus on uncertainty quantification and propagation of uncertainty; ideally, uncertainty and sensitivity analysis should be run in tandem. Motivation A mathematical model (for example in biology, climate change, economics, renewable energy, agronomy...) can be highly complex, and as a result, its relationships between inputs and outputs may be faultily understood. In such cases, the model can be viewed as a black box, i.e. the output is an "opaque" function of its inputs. Quite often, some or all of the model inputs are subject to sources of uncertainty, including errors of measurement, er ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
VC Theory
VC may refer to: Military decorations * Victoria Cross, a military decoration awarded by the United Kingdom and other Commonwealth nations ** Victoria Cross for Australia ** Victoria Cross (Canada) ** Victoria Cross for New Zealand * Victorious Cross, Idi Amin's self-bestowed military decoration Organisations * Ocean Airlines (IATA airline designator 2003-2008), Italian cargo airline * Voyageur Airways (IATA airline designator since 1968), Canadian charter airline * Visual Communications, an Asian-Pacific-American media arts organization in Los Angeles, California * Viet Cong, a political and military organization during the Vietnam War (1959–1975) Education * Vanier College, Canada * Vassar College, US * Velez College, Philippines * Virginia College, US * Ventura College, US Places * Saint Vincent and the Grenadines (ISO country code) * Sri Lanka (ICAO airport prefix code) * Watsonian vice-counties, subdivisions of Great Britain or Ireland * Ventura County, in Southern Cali ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
VC Dimension
VC may refer to: Military decorations * Victoria Cross, a military decoration awarded by the United Kingdom and other Commonwealth nations ** Victoria Cross for Australia ** Victoria Cross (Canada) ** Victoria Cross for New Zealand * Victorious Cross, Idi Amin's self-bestowed military decoration Organisations * Ocean Airlines (IATA airline designator 2003-2008), Italian cargo airline * Voyageur Airways (IATA airline designator since 1968), Canadian charter airline * Visual Communications, an Asian-Pacific-American media arts organization in Los Angeles, California * Viet Cong, a political and military organization during the Vietnam War (1959–1975) Education * Vanier College, Canada * Vassar College, US * Velez College, Philippines * Virginia College, US * Ventura College, US Places * Saint Vincent and the Grenadines (ISO country code) * Sri Lanka (ICAO airport prefix code) * Watsonian vice-counties, subdivisions of Great Britain or Ireland * Ventura County, in S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform Convergence
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E as the function domain if, given any arbitrarily small positive number \varepsilon, a number N can be found such that each of the functions f_N, f_,f_,\ldots differs from f by no more than \varepsilon ''at every point'' x ''in'' E. Described in an informal way, if f_n converges to f uniformly, then how quickly the functions f_n approach f is "uniform" throughout E in the following sense: in order to guarantee that f_n(x) differs from f(x) by less than a chosen distance \varepsilon, we only need to make sure that n is larger than or equal to a certain N, which we can find without knowing the value of x\in E in advance. In other words, there exists a number N=N(\varepsilon) that could depend on \varepsilon but is ''independent of x'', such that choosing n\geq N wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Machine Learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task (computing), tasks without explicit Machine code, instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed Neural network (machine learning), neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance. ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics. Statistics and mathematical optimisation (mathematical programming) methods comprise the foundations of machine learning. Data mining is a related field of study, focusing on exploratory data analysi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |