HOME





Sperner's Lemma
In mathematics, Sperner's lemma is a combinatorial result on colorings of triangulations, analogous to the Brouwer fixed point theorem, which is equivalent to it. It states that every Sperner coloring (described below) of a triangulation of an simplex contains a cell whose vertices all have different colors. The initial result of this kind was proved by Emanuel Sperner, in relation with proofs of invariance of domain. Sperner colorings have been used for effective computation of fixed points and in root-finding algorithms, and are applied in fair division (cake cutting) algorithms. According to the Soviet ''Mathematical Encyclopaedia'' (ed. I.M. Vinogradov), a related 1929 theorem (of Knaster, Borsuk and Mazurkiewicz) had also become known as the ''Sperner lemma'' – this point is discussed in the English translation (ed. M. Hazewinkel). It is now commonly known as the Knaster–Kuratowski–Mazurkiewicz lemma. Statement One-dimensional case In one dimension, Spern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sperner2d
Emanuel Sperner (9 December 1905 – 31 January 1980) was a German mathematician, best known for two theorems. He was born in Waltdorf (near Neiße, Upper Silesia, now Nysa, Poland), and died in Sulzburg-Laufen, West Germany. He was a student at Carolinum in Nysa and then Hamburg University where his advisor was Wilhelm Blaschke. He was appointed Professor in Königsberg in 1934, and subsequently held posts in a number of universities until 1974. Sperner's theorem, from 1928, says that the size of an antichain in the power set of an ''n''-set (a Sperner family) is at most the middle binomial coefficient(s). It has several proofs and numerous generalizations, including the Sperner property of a partially ordered set. Sperner's lemma, from 1928, states that every Sperner coloring of a triangulation of an ''n''-dimensional simplex contains a cell colored with a complete set of colors. It was proven by Sperner to provide an alternate proof of a theorem of Lebesgue characterizing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intermediate Value Theorem
In mathematical analysis, the intermediate value theorem states that if f is a continuous function whose domain contains the interval , then it takes on any given value between f(a) and f(b) at some point within the interval. This has two important corollaries: # If a continuous function has values of opposite sign inside an interval, then it has a root in that interval (Bolzano's theorem). # The image of a continuous function over an interval is itself an interval. Motivation This captures an intuitive property of continuous functions over the real numbers: given ''f'' continuous on ,2/math> with the known values f(1) = 3 and f(2) = 5, then the graph of y = f(x) must pass through the horizontal line y = 4 while x moves from 1 to 2. It represents the idea that the graph of a continuous function on a closed interval can be drawn without lifting a pencil from the paper. Theorem The intermediate value theorem states the following: Consider the closed interval I = ,b/math> ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hypergraph
In mathematics, a hypergraph is a generalization of a Graph (discrete mathematics), graph in which an graph theory, edge can join any number of vertex (graph theory), vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices. Formally, a directed hypergraph is a pair (X,E), where X is a set of elements called ''nodes'', ''vertices'', ''points'', or ''elements'' and E is a set of pairs of subsets of X. Each of these pairs (D,C)\in E is called an ''edge'' or ''hyperedge''; the vertex subset D is known as its ''tail'' or ''domain'', and C as its ''head'' or ''codomain''. The order of a hypergraph (X,E) is the number of vertices in X. The size of the hypergraph is the number of edges in E. The order of an edge e=(D,C) in a directed hypergraph is , e, = (, D, ,, C, ): that is, the number of vertices in its tail followed by the number of vertices in its head. The definition above generalizes from a directed graph to a directed hypergraph by defining the h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PPAD Complete
In computer science, PPAD ("Polynomial Parity Arguments on Directed graphs") is a complexity class introduced by Christos Papadimitriou in 1994. PPAD is a subclass of TFNP based on functions that can be shown to be total by a parity argument. The class attracted significant attention in the field of algorithmic game theory because it contains the problem of computing a Nash equilibrium: this problem was shown to be complete for PPAD by Daskalakis, Goldberg and Papadimitriou with at least 3 players and later extended by Chen and Deng to 2 players.*. Definition PPAD is a subset of the class TFNP, the class of function problems in FNP that are guaranteed to be total. The TFNP formal definition is given as follows: :A binary relation P(''x'',''y'') is in TFNP if and only if there is a deterministic polynomial time algorithm that can determine whether P(''x'',''y'') holds given both ''x'' and ''y'', and for every ''x'', there exists a ''y'' such that P(''x'',''y'') holds. Subclasses ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brouwer Fixed-point Theorem
Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after Luitzen Egbertus Jan Brouwer, L. E. J. (Bertus) Brouwer. It states that for any continuous function f mapping a nonempty compactness, compact convex set to itself, there is a point x_0 such that f(x_0)=x_0. The simplest forms of Brouwer's theorem are for continuous functions f from a closed interval I in the real numbers to itself or from a closed Disk (mathematics), disk D to itself. A more general form than the latter is for continuous functions from a nonempty convex compact subset K of Euclidean space to itself. Among hundreds of fixed-point theorems, Brouwer's is particularly well known, due in part to its use across numerous fields of mathematics. In its original field, this result is one of the key theorems characterizing the topology of Euclidean spaces, along with the Jordan curve theorem, the hairy ball theorem, the invariance of dimension and the Borsuk–Ulam theorem. This gives it a place ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




PPAD (complexity)
In computer science, PPAD ("Polynomial Parity Arguments on Directed graphs") is a complexity class introduced by Christos Papadimitriou in 1994. PPAD is a subclass of TFNP based on functions that can be shown to be total by a parity argument. The class attracted significant attention in the field of algorithmic game theory because it contains the problem of computing a Nash equilibrium: this problem was shown to be complete for PPAD by Daskalakis, Goldberg and Papadimitriou with at least 3 players and later extended by Chen and Deng to 2 players.*. Definition PPAD is a subset of the class TFNP, the class of function problems in FNP that are guaranteed to be total. The TFNP formal definition is given as follows: :A binary relation P(''x'',''y'') is in TFNP if and only if there is a deterministic polynomial time algorithm that can determine whether P(''x'',''y'') holds given both ''x'' and ''y'', and for every ''x'', there exists a ''y'' such that P(''x'',''y'') holds. Subclasses ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complexity Class
In computational complexity theory, a complexity class is a set (mathematics), set of computational problems "of related resource-based computational complexity, complexity". The two most commonly analyzed resources are time complexity, time and space complexity, memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time complexity, time or space complexity, memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements. For instance, the class P (complexity), P is the set of decision problems solvable by a deterministic Turing machine in polynomial time. There are, however, many complexity classes defined in terms of other types of problems (e.g. Counting problem (complexity), counting problems and function problems) and using other models of computation (e.g. probabil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Christos Papadimitriou
Christos Charilaos Papadimitriou (; born August 16, 1949) is a Greek-American theoretical computer scientist and the Donovan Family Professor of Computer Science at Columbia University. Education Papadimitriou studied at the National Technical University of Athens, where in 1972 he received his Bachelor of Arts degree in electrical engineering. He then pursued graduate studies at Princeton University, where he received his Ph.D. in electrical engineering and computer science in 1976 after completing a doctoral dissertation titled "The complexity of combinatorial optimization problems." Career Papadimitriou has taught at Harvard, MIT, the National Technical University of Athens, Stanford, UCSD, University of California, Berkeley and is currently the Donovan Family Professor of Computer Science at Columbia University. Papadimitriou co-authored a paper on pancake sorting with Bill Gates, then a Harvard undergraduate. Papadimitriou recalled "Two years later, I called to tell him ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Volume Of A Simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, * a 0-dimensional simplex is a point, * a 1-dimensional simplex is a line segment, * a 2-dimensional simplex is a triangle, * a 3-dimensional simplex is a tetrahedron, and * a 4-dimensional simplex is a 5-cell. Specifically, a -simplex is a -dimensional polytope that is the convex hull of its vertices. More formally, suppose the points u_0, \dots, u_k are affinely independent, which means that the vectors u_1 - u_0,\dots, u_k-u_0 are linearly independent. Then, the simplex determined by them is the set of points C = \left\. A regular simplex is a simplex that is also a regular polytope. A regular -simplex may be constructed from a regular -simplex by connecting a new vertex to all original vertices by the common edge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]