Spaltenstein Variety
In algebraic geometry, a Spaltenstein variety is a variety given by the fixed point (mathematics), fixed point set of a nilpotent transformation on a flag variety. They were introduced by . In the special case of full flag varieties the Spaltenstein varieties are Springer variety, Springer varieties. References * * Algebraic groups {{algebraic-geometry-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fixed Point (mathematics)
A fixed point (sometimes shortened to fixpoint, also known as an invariant point) is a value that does not change under a given transformation. Specifically, in mathematics, a fixed point of a function is an element that is mapped to itself by the function. In physics, the term fixed point can refer to a temperature that can be used as a reproducible reference point, usually defined by a phase change or triple point. Fixed point of a function Formally, is a fixed point of a function if belongs to both the domain and the codomain of , and . For example, if is defined on the real numbers by f(x) = x^2 - 3 x + 4, then 2 is a fixed point of , because . Not all functions have fixed points: for example, , has no fixed points, since is never equal to for any real number. In graphical terms, a fixed point means the point is on the line , or in other words the graph of has a point in common with that line. Fixed-point iteration In numerical analysis, ''fixed-poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flag Variety
In mathematics, a generalized flag variety (or simply flag variety) is a homogeneous space whose points are flags in a finite-dimensional vector space ''V'' over a field F. When F is the real or complex numbers, a generalized flag variety is a smooth or complex manifold, called a real or complex flag manifold. Flag varieties are naturally projective varieties. Flag varieties can be defined in various degrees of generality. A prototype is the variety of complete flags in a vector space ''V'' over a field F, which is a flag variety for the special linear group over F. Other flag varieties arise by considering partial flags, or by restriction from the special linear group to subgroups such as the symplectic group. For partial flags, one needs to specify the sequence of dimensions of the flags under consideration. For subgroups of the linear group, additional conditions must be imposed on the flags. In the most general sense, a generalized flag variety is defined to mean a projecti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer Variety
Springer or springers may refer to: Publishers * Springer Science+Business Media, aka Springer International Publishing, a worldwide publishing group founded in 1842 in Germany formerly known as Springer-Verlag. ** Springer Nature, a multinational academic publishing group created by the merger of Springer Science+Business Media, Nature Publishing Group, Palgrave Macmillan, and Macmillan Education * Axel Springer SE, an important conservative German publishing house, including several newspapers * Springer Publishing Company, an American publishing company of academic journals and books, focusing on public health and the like Places ;United States * Springer, New Mexico * Springer, Oklahoma * Springer Mountain, southern terminus of the Appalachian Trail * Springer Opera House, Columbus, Georgia Animals * In cattle, a cow or heifer near to calving * English Springer Spaniel, a breed of dog * Welsh Springer Spaniel, a breed of dog * Springer (orca), a wild orca (killer whale) also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indagationes Mathematicae
''Indagationes Mathematicae'' (from Latin: ''inquiry, search, investigation of the mathematics'') is a Dutch mathematics journal. The journal originates from the ''Proceedings of the Royal Netherlands Academy of Arts and Sciences'' (or ''Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen''), founded in 1895. From 1939, mathematics articles in this journal were published separately, under the alternative title ''Indagationes Mathematicae''. In 1951 the proceedings officially split into three journals, keeping the same name but distinguished from each other by being in separate series. They were Series A (Mathematical Sciences), Series B (Physical Sciences), and Series C (Biological and Medical Sciences). At that time, Series A became published by the North-Holland Publishing Company; the volumes from this time are now listed by the publisher as ''Indagationes Mathematicae (Proceedings)''. [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationall ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |