Souček Space
   HOME





Souček Space
In mathematics, Souček spaces are generalizations of Sobolev spaces, named after the Czech mathematician Jiří Souček. One of their main advantages is that they offer a way to deal with the fact that the Sobolev space ''W''1,1 is not a reflexive space; since ''W''1,1 is not reflexive, it is not always true that a bounded sequence has a weakly convergent subsequence, which is a desideratum in many applications. Definition Let Ω be a bounded domain in ''n''-dimensional Euclidean space with smooth boundary. The Souček space ''W''1,''μ''(Ω; R''m'') is defined to be the space of all ordered pairs (''u'', ''v''), where * ''u'' lies in the Lebesgue space ''L''1(Ω; R''m''); * ''v'' (thought of as the gradient of ''u'') is a regular Borel measure on the closure of Ω; * there exists a sequence of functions ''u''''k'' in the Sobolev space ''W''1,1(Ω; R''m'') such that ::\lim_ u_ = u \mbox L^ (\Omega; \mathbf^) :and ::\lim_ \n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lp Space
In mathematics, the spaces are function spaces defined using a natural generalization of the -norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbaki group they were first introduced by Frigyes Riesz . spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, economics, finance, engineering, and other disciplines. Preliminaries The -norm in finite dimensions The Euclidean length of a vector x = (x_1, x_2, \dots, x_n) in the n-dimensional real vector space \Reals^n is given by the Euclidean norm: \, x\, _2 = \left(^2 + ^2 + \dotsb + ^2\right)^. The Euclidean distance between two points x and y is the length \, x - y\, _2 of the straight line b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Variation
In mathematics, the total variation identifies several slightly different concepts, related to the (local property, local or global) structure of the codomain of a Function (mathematics), function or a measure (mathematics), measure. For a real number, real-valued continuous function ''f'', defined on an interval (mathematics), interval [''a'', ''b''] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation ''x'' ↦ ''f''(''x''), for ''x'' ∈ [''a'', ''b'']. Functions whose total variation is finite are called ''Bounded variation, functions of bounded variation''. Historical note The concept of total variation for functions of one real variable was first introduced by Camille Jordan in the paper . He used the new concept in order to prove a convergence theorem for Fourier series of discontinuous function, discontinuous periodic functions whose variation is Bounded variation, bounded. The extensi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Norm (mathematics)
In mathematics, a norm is a function (mathematics), function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the Origin (mathematics), origin: it Equivariant map, commutes with scaling, obeys a form of the triangle inequality, and zero is only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the #Euclidean norm, Euclidean norm, the #p-norm, 2-norm, or, sometimes, the magnitude or length of the vector. This norm can be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a ''seminormed vector space''. The term pseudonorm has been used for several related meaning ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banach Space
In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term " Fréchet space". Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete nor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vector-valued Measure
In mathematics, a vector measure is a function defined on a family of sets and taking vector values satisfying certain properties. It is a generalization of the concept of finite measure, which takes nonnegative real values only. Definitions and first consequences Given a field of sets (\Omega, \mathcal F) and a Banach space X, a finitely additive vector measure (or measure, for short) is a function \mu:\mathcal \to X such that for any two disjoint sets A and B in \mathcal one has \mu(A\cup B) =\mu(A) + \mu (B). A vector measure \mu is called countably additive if for any sequence (A_i)_^ of disjoint sets in \mathcal F such that their union is in \mathcal F it holds that \mu = \sum_^\mu(A_i) with the series on the right-hand side convergent in the norm of the Banach space X. It can be proved that an additive vector measure \mu is countably additive if and only if for any sequence (A_i)_^ as above one has where \, \cdot\, is the norm on X. Countably additive vector measure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak-* Convergence
In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space (such as a normed vector space) with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis. One may call subsets of a topological vector space weakly closed (respectively, weakly compact, etc.) if they are closed (respectively, compact, etc.) with respect to the weak topology. Likewise, functions are sometimes called weakly continuous (respectively, weakly differentiable, weakly analytic, etc.) if they are continuous (respectively, differentiable, analytic, etc.) with respect to the weak topology. History Starting in the early 1900s, David Hilbert and Marcel Riesz made extensive use of weak convergence. The early pioneers of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Closure (topology)
In topology, the closure of a subset of points in a topological space consists of all points in together with all limit points of . The closure of may equivalently be defined as the union of and its boundary, and also as the intersection of all closed sets containing . Intuitively, the closure can be thought of as all the points that are either in or "very near" . A point which is in the closure of is a point of closure of . The notion of closure is in many ways dual to the notion of interior. Definitions Point of closure For S as a subset of a Euclidean space, x is a point of closure of S if every open ball centered at x contains a point of S (this point can be x itself). This definition generalizes to any subset S of a metric space X. Fully expressed, for X as a metric space with metric d, x is a point of closure of S if for every r > 0 there exists some s \in S such that the distance d(x, s) < r (x = s is allowed). Another way to expre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Measure
In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. Formal definition Let X be a locally compact Hausdorff space, and let \mathfrak(X) be the smallest σ-algebra that contains the open sets of X; this is known as the σ-algebra of Borel sets. A Borel measure is any measure \mu defined on the σ-algebra of Borel sets. A few authors require in addition that \mu is locally finite, meaning that every point has an open neighborhood with finite measure. For Hausdorff spaces, this implies that \mu(C) 0 and ''μ''(''B''(''x'', ''r'')) ≤ ''rs'' holds for some constant ''s'' > 0 and for every ball ''B''(''x'', ''r'') in ''X'', then the Hausdorff dimension dimHaus(''X'') ≥ ''s''. A partial converse is provided by the Frostman lemma: Lemma: Let ''A'' be a Borel subset of R''n'', and let ''s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Measure
In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets. Definition Let (''X'', ''T'') be a topological space and let Σ be a σ-algebra on ''X''. Let ''μ'' be a measure on (''X'', Σ). A measurable subset ''A'' of ''X'' is said to be inner regular if :\mu (A) = \sup \ This property is sometimes referred to in words as "approximation from within by compact sets." Some authors use the term tight as a synonym for inner regular. This use of the term is closely related to tightness of a family of measures, since a finite measure ''μ'' is inner regular if and only if, for all ''ε'' > 0, there is some compact subset ''K'' of ''X'' such that ''μ''(''X'' \ ''K'') < ''ε''. This is precisely the condition that the
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordered Pair
In mathematics, an ordered pair, denoted (''a'', ''b''), is a pair of objects in which their order is significant. The ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a''), unless ''a'' = ''b''. In contrast, the '' unordered pair'', denoted , always equals the unordered pair . Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors. (Technically, this is an abuse of terminology since an ordered pair need not be an element of a vector space.) The entries of an ordered pair can be other ordered pairs, enabling the recursive definition of ordered ''n''-tuples (ordered lists of ''n'' objects). For example, the ordered triple (''a'',''b'',''c'') can be defined as (''a'', (''b'',''c'')), i.e., as one pair nested in another. In the ordered pair (''a'', ''b''), the object ''a'' is called the ''first entry'', and the object ''b'' the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sobolev Spaces
In mathematics, a Sobolev space is a vector space of functions equipped with a normed space, norm that is a combination of Lp norm, ''Lp''-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak derivative, weak sense to make the space Complete metric space, complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function. Sobolev spaces are named after the Russian mathematician Sergei Lvovich Sobolev, Sergei Sobolev. Their importance comes from the fact that Weak solution, weak solutions of some important partial differential equations exist in appropriate Sobolev spaces, even when there are no strong solutions in spaces of continuous functions with the derivatives understood in the classical sense. Motivat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]