Solutions To The Einstein Field Equations
   HOME



picture info

Solutions To The Einstein Field Equations
Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as ''exact'' or ''non-exact''. The Einstein field equations are G_ + \Lambda g_ \, = \kappa T_ , where G_ is the Einstein tensor, \Lambda is the cosmological constant (sometimes taken to be zero for simplicity), g_ is the metric tensor, \kappa is a constant, and T_ is the stress–energy tensor. The Einstein field equations relate the Einstein tensor to the stress–energy tensor, which represents the distribution of energy, momentum and stress in the spacetime manifold. The Einstein tensor is built up from the metric tensor and its partial derivatives; thus, given the stress–energy tensor, the Einstein field equations are a system of ten partial differential equations in which the metric tensor can be solved for. Solving the equations It is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abstract Index Notation
Abstract index notation (also referred to as slot-naming index notation) is a mathematical notation for tensors and spinors that uses indices to indicate their types, rather than their components in a particular basis. The indices are mere placeholders, not related to any basis and, in particular, are non-numerical. Thus it should not be confused with the Ricci calculus. The notation was introduced by Roger Penrose as a way to use the formal aspects of the Einstein summation convention to compensate for the difficulty in describing tensor contraction, contractions and covariant derivative, covariant differentiation in modern abstract tensor notation, while preserving the explicit Covariance and contravariance of vectors, covariance of the expressions involved. Let V be a vector space, and V^* its dual space. Consider, for example, an order-2 Covariance and contravariance of vectors, covariant tensor h \in V^*\otimes V^*. Then h can be identified with a bilinear form on V. In ot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coordinate Conditions
In general relativity, the laws of physics can be expressed in a generally covariant form. In other words, the description of the world as given by the laws of physics does not depend on our choice of coordinate systems. However, it is often useful to fix upon a particular coordinate system, in order to solve actual problems or make actual predictions. A coordinate condition selects such coordinate system(s). Indeterminacy in general relativity The Einstein field equations do not determine the metric uniquely, even if one knows what the metric tensor equals everywhere at an initial time. This situation is analogous to the failure of the Maxwell equations to determine the potentials uniquely. In both cases, the ambiguity can be removed by gauge fixing. Thus, coordinate conditions are a type of gauge condition. No coordinate condition is generally covariant, but many coordinate conditions are Lorentz covariant or rotationally covariant. Naively, one might think that coordinat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a ''center of rotation''. A solid figure has an infinite number of possible axes and angles of rotation, including chaotic rotation (between arbitrary orientation (geometry), orientations), in contrast to rotation around a fixed axis, rotation around a axis. The special case of a rotation with an internal axis passing through the body's own center of mass is known as a spin (or ''autorotation''). In that case, the surface intersection of the internal ''spin axis'' can be called a ''pole''; for example, Earth's rotation defines the geographical poles. A rotation around an axis completely external to the moving body is called a revolution (or ''orbit''), e.g. Earth's orbit around the Sun. The en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circular Symmetry
In geometry, circular symmetry is a type of continuous symmetry for a Plane (geometry), planar object that can be rotational symmetry, rotated by any arbitrary angle and map onto itself. Rotational circular symmetry is isomorphic with the circle group in the complex plane, or the special orthogonal group SO(2), and unitary group U(1). Reflective circular symmetry is isomorphic with the orthogonal group O(2). Two dimensions A 2-dimensional object with circular symmetry would consist of concentric circles and Annulus (mathematics), annular domains. Rotational circular symmetry has all cyclic symmetry, Z''n'' as subgroup symmetries. Reflective circular symmetry has all dihedral symmetry, Dih''n'' as subgroup symmetries. Three dimensions In 3-dimensions, a surface of revolution, surface or solid of revolution has circular symmetry around an axis, also called cylindrical symmetry or axial symmetry. An example is a right circular cone. Circular symmetry in 3 dimensions has all ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schwarzschild Solution
In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. It was found by Karl Schwarzschild in 1916. According to Birkhoff's theorem, the Schwarzschild metric is the most general spherically symmetric vacuum solution of the Einstein field equations. A Schwarzschild black hole or static black hole is a black hole that has neither electric charge nor angular momentum (non-rotating). A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Differential Equations
In mathematics, a linear differential equation is a differential equation that is linear in the unknown function and its derivatives, so it can be written in the form a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b(x) where and are arbitrary differentiable functions that do not need to be linear, and are the successive derivatives of an unknown function of the variable . Such an equation is an ordinary differential equation (ODE). A ''linear differential equation'' may also be a linear partial differential equation (PDE), if the unknown function depends on several variables, and the derivatives that appear in the equation are partial derivatives. Types of solution A linear differential equation or a system of linear equations such that the associated homogeneous equations have constant coefficients may be solved by quadrature, which means that the solutions may be expressed in terms of integrals. This is also true for a linear equation of order one, with non-constant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elementary Functions
In mathematics, an elementary function is a function (mathematics), function of a single variable (mathematics), variable (typically Function of a real variable, real or Complex analysis#Complex functions, complex) that is defined as taking addition, sums, multiplication, products, algebraic function, roots and composition of functions, compositions of finite set, finitely many Polynomial#Polynomial functions, polynomial, Rational function, rational, Trigonometric functions, trigonometric, Hyperbolic functions, hyperbolic, and Exponential function, exponential functions, and their Inverse function, inverses (e.g., Inverse trigonometric functions, arcsin, Natural logarithm, log, or ''x''1/''n''). All elementary functions are continuous on their Domain of a function, domains. Elementary functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841. An abstract algebra, algebraic treatment of elementary functions was started by Joseph Fels Ritt in the 1930s. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-exact Solutions In General Relativity
Non-exact solutions in general relativity are solutions of Albert Einstein's field equations of general relativity which hold only approximately. These solutions are typically found by treating the gravitational field, g, as a background space-time, \gamma, (which is usually an exact solution) plus some small perturbation, h. Then one is able to solve the Einstein field equations as a series in h, dropping higher order terms for simplicity. A common example of this method results in the linearised Einstein field equations. In this case we expand the full space-time metric about the flat Minkowski metric, \eta_: ::g_ = \eta_ + h_ +\mathcal(h^2), and dropping all terms which are of second or higher order in h. See also * Exact solutions in general relativity * Linearized gravity * Post-Newtonian expansion * Parameterized post-Newtonian formalism * Numerical relativity Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spacetime Symmetries
Spacetime symmetries are features of spacetime that can be described as exhibiting some form of symmetry. The role of symmetry in physics is important in simplifying solutions to many problems. Spacetime symmetries are used in the study of exact solutions of Einstein's field equations of general relativity. Spacetime symmetries are distinguished from internal symmetries. Physical motivation Physical problems are often investigated and solved by noticing features which have some form of symmetry. For example, in the Schwarzschild solution, the role of spherical symmetry is important in deriving the Schwarzschild solution and deducing the physical consequences of this symmetry (such as the nonexistence of gravitational radiation in a spherically pulsating star). In cosmological problems, symmetry plays a role in the cosmological principle, which restricts the type of universes that are consistent with large-scale observations (e.g. the Friedmann–Lemaître–Robertson–Walker ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exact Solutions In General Relativity
In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field. Background and definition These tensor fields should obey any relevant physical laws (for example, any electromagnetic field must satisfy Maxwell's equations). Following a standard recipe which is widely used in mathematical physics, these tensor fields should also give rise to specific contributions to the stress–energy tensor T^. (A field is described by a Lagrangian, varying with respect to the field should give the field equations and varyin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchronous Coordinates
A synchronous frame is a reference frame in which the time coordinate defines proper time for all co-moving observers. It is built by choosing some constant time hypersurface as an origin, such that has in every point a normal (geometry) , normal along the time line and a light cone with an apex in that point can be constructed; all interval elements on this hypersurface are space-like. A family of geodesics normal to this hypersurface are drawn and defined as the time coordinates with a beginning at the hypersurface. In terms of metric-tensor components g_, a synchronous frame is defined such that :g_=1,\quad g_=0 where \alpha=1,2,3. Such a construct, and hence, choice of synchronous frame, is always possible though it is not unique. It allows any transformation of space coordinates that does not depend on time and, additionally, a transformation brought about by the arbitrary choice of hypersurface used for this geometric construct. Synchronization in an arbitrary frame of ref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]