HOME





Scientific Laws Named After People
This is a list of scientific laws named after people ( eponymous laws). For other lists of eponyms, see eponym. See also * Eponym * Fields of science * List of eponymous laws (overlaps with this list but includes non-scientific laws such as Murphy's law) * List of legislation named for a person * List of laws in science * Lists of etymologies * Scientific constants named after people * Scientific phenomena named after people * Stigler's law of eponymy Further reading * {{cite book, title=A dictionary of named effects and laws in chemistry, physics, and mathematics, last1=Ballentyne, first1=D. W. G., last2=Lovett, first2=D. R., publisher=Chapman and Hall, year=1980, isbn=978-0-412-22380-8, edition=4th scientific laws named after people Scientific laws Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eponymous Laws
This list of eponymous laws provides links to articles on laws, principles, adages, and other succinct observations or predictions named after a person. In some cases the person named has coined the law – such as Parkinson's law. In others, the work or publications of the individual have led to the law being so named – as is the case with Moore's law. There are also laws ascribed to individuals by others, such as Murphy's law; or given eponymous names despite the absence of the named person. Named laws range from significant scientific laws such as Newton's laws of motion, to humorous examples such as Murphy's law. A–B * Acton's dictum: "Power tends to corrupt, and absolute power corrupts absolutely. Great men are almost always bad men .. * Aitken's law describes how vowel length in Scots and Scottish English is conditioned by environment. Named for Professor A. J. Aitken, who formulated it. * Alder's razor: See Newton's flaming laser sword below. * Allen's rule ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Svante Arrhenius
Svante August Arrhenius ( , ; 19 February 1859 – 2 October 1927) was a Swedish scientist. Originally a physicist, but often referred to as a chemist, Arrhenius was one of the founders of the science of physical chemistry. In 1903, he received the Nobel Prize in Chemistry, becoming the first Sweden, Swedish Nobel laureate. In 1905, he became the director of the Nobel Institute, where he remained until his death."Arrhenius, Svante August" in ''Chambers's Encyclopædia''. London: George Newnes Ltd, George Newnes, 1961, Vol. 1, p. 635. Arrhenius was the first to use the principles of physical chemistry to estimate the extent to which increases in the atmospheric carbon dioxide are responsible for the Earth's increasing surface temperature. His work played an important role in the emergence of modern climatology, climate science. In the 1960s, Charles David Keeling reliably measured the level of carbon dioxide present in the air showing it was increasing and that, according to the g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Biot–Savart Law
In physics, specifically electromagnetism, the Biot–Savart law ( or ) is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. The Biot–Savart law is fundamental to magnetostatics. It is valid in the Magnetostatics, magnetostatic approximation and consistent with both Ampère's circuital law and Gauss's law for magnetism. When magnetostatics does not apply, the Biot–Savart law should be replaced by Jefimenko's equations. The law is named after Jean-Baptiste Biot and Félix Savart, who discovered this relationship in 1820. Equation In the following equations, it is assumed that the medium is not magnetic (e.g., vacuum). This allows for straightforward derivation of magnetic field B, while the fundamental vector here is H. Electric currents (along a closed curve/wire) The Biot–Savart law is used for computing the resultant magnetic field ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Daniel Bernoulli
Daniel Bernoulli ( ; ; – 27 March 1782) was a Swiss people, Swiss-France, French mathematician and physicist and was one of the many prominent mathematicians in the Bernoulli family from Basel. He is particularly remembered for his applications of mathematics to mechanics, especially fluid mechanics, and for his pioneering work in probability and statistics. His name is commemorated in the Bernoulli's principle, a particular example of the conservation of energy, which describes the mathematics of the mechanism underlying the operation of two important technologies of the 20th century: the carburetor and the aeroplane wing. Early life Daniel Bernoulli was born in Groningen (city), Groningen, in the Netherlands, into a Bernoulli family, family of distinguished mathematicians.Murray Rothbard, Rothbard, MurrayDaniel Bernoulli and the Founding of Mathematical Economics, ''Mises Institute'' (excerpted from ''An Austrian Perspective on the History of Economic Thought'') The Bernou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli's Principle
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. For example, for a fluid flowing horizontally Bernoulli's principle states that an increase in the speed occurs simultaneously with a decrease in static pressure, pressure The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book ''Hydrodynamica'' in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form. Bernoulli's principle can be derived from the principle of conservation of energy. This states that, in a steady flow, the sum of all forms of energy in a fluid is the same at all points that are free of viscous forces. This requires that the sum of kinetic energy, potential energy and internal energy remains constant. Thus an increase in the speed of the fluid—implying an increase in its kinetic energy—occur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Johann Heinrich Lambert
Johann Heinrich Lambert (; ; 26 or 28 August 1728 – 25 September 1777) was a polymath from the Republic of Mulhouse, at that time allied to the Switzerland, Swiss Confederacy, who made important contributions to the subjects of mathematics, physics (particularly optics), philosophy, astronomy and map projections. Biography Lambert was born in 1728 into a Huguenot family in the city of Mulhouse, nowadays in Alsace, France, at that time a city-state allied to the Swiss Confederacy. Some sources give 26 August as his birth date and others 28 August. Leaving school at 12, he continued to study in his free time while undertaking a series of jobs. These included assistant to his father (a tailor), a clerk at a nearby iron works, a private tutor, secretary to the editor of ''Basler Zeitung'' and, at the age of 20, private tutor to the sons of Count Salis in Chur. Travelling Europe with his charges (1756–1758) allowed him to meet established mathematicians in the German states, Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




August Beer
August Beer (; 31 July 1825 – 18 November 1863) was a German physicist, chemist, and mathematician of Jewish descent. Biography Beer was born in Trier, where he studied mathematics and natural sciences. Beer was educated at the technical school and gymnasium of his native town until 1845, when he went to Bonn to study mathematics and the sciences under the mathematician and physicist Julius Plücker, whose assistant he became later. In 1848 he won the prize for his essay, "De Situ Axium Opticorum in Crystallis Biaxibus," and obtained the degree of Ph.D. Two years later he was appointed lecturer at the University of Bonn. In 1852, Beer published a paper on the absorption of red light in coloured aqueous solutions of various salts. Beer makes use of the fact, derived from Bouguer's and Lambert's absorption laws, that the intensity of light transmitted through a solution at a given wavelength decreases exponentially with the path length d and the concentration c of the solute ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beer–Lambert Law
The Beer–Bouguer–Lambert (BBL) extinction law is an empirical relationship describing the attenuation in intensity of a radiation beam passing through a macroscopically homogenous medium with which it interacts. Formally, it states that the intensity of radiation decays exponentially in the absorbance of the medium, and that said absorbance is proportional to the length of beam passing through the medium, the concentration of interacting matter along that path, and a constant representing said matter's propensity to interact. The extinction law's primary application is in chemical analysis, where it underlies the Beer–Lambert law, commonly called Beer's law. Beer's law states that a beam of visible light passing through a chemical solution of fixed geometry experiences absorption proportional to the solute concentration. Other applications appear in physical optics, where it quantifies astronomical extinction and the absorption of photons, neutrons, or rarefied gas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frank Benford
Frank Albert Benford Jr. (July 10, 1883 – December 4, 1948) was an American electrical engineer and physicist best known for rediscovering and generalizing Benford's Law, an earlier statistical statement by Simon Newcomb, about the occurrence of digits in lists of data.(subscription required) Benford is also known for having devised, in 1937, an instrument for measuring the refractive index of glass. An expert in optical measurements, he published 109 papers in the fields of optics and mathematics and was granted 20 patents on optical devices. Early life He was born in Johnstown, Pennsylvania. His date of birth is given variously as May 29 or July 10, 1883. At the age of 6 his family home was destroyed by the Johnstown Flood. Education He graduated from the University of Michigan in 1910. Career Benford worked for General Electric General Electric Company (GE) was an American Multinational corporation, multinational Conglomerate (company), conglomerate founde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




John Stewart Bell
John Stewart Bell (28 July 1928 – 1 October 1990) was a physicist from Northern Ireland and the originator of Bell's theorem, an important theorem in quantum mechanics, quantum physics regarding hidden-variable theory, hidden-variable theories. In 2022, the Nobel Prize in Physics was awarded to Alain Aspect, John Clauser, and Anton Zeilinger for work on Bell test, Bell inequalities and the Aspect's experiment, experimental validation of Bell's theorem. Biography Early life and work Bell was born in Belfast, Northern Ireland to a working class family. Due to financial hardship, neither parent and none of his three older siblings completed high school, typically dropping out of school by age 14 to work. When he was 11 years old, he decided to be a scientist, and encouraged by his mother, at 16 he graduated from Belfast Technical High School. Then in an exceptionally rare occurrence for someone of his background, Bell attended the Queen's University of Belfast, where, in 194 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bell's Theorem
Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. The first such result was introduced by John Stewart Bell in 1964, building upon the Einstein–Podolsky–Rosen paradox, which had called attention to the phenomenon of quantum entanglement. In the context of Bell's theorem, "local" refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light. " Hidden variables" are supposed properties of quantum particles that are not included in quantum theory but nevertheless affect the outcome of experiments. In the words of Bell, "If hidden-variable theoryis local it will not agree with quantum mechanics, and if it agrees with quantum mec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]