HOME



picture info

Reproducing Kernel Hilbert Space
In functional analysis, a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Specifically, a Hilbert space H of functions from a set X (to \mathbb or \mathbb) is an RKHS if the point-evaluation functional L_x:H\to\mathbb, L_x(f)=f(x), is continuous for every x\in X. Equivalently, H is an RKHS if there exists a function K_x \in H such that, for all f \in H,\langle f, K_x \rangle = f(x).The function K_x is then called the ''reproducing kernel'', and it reproduces the value of f at x via the inner product. An immediate consequence of this property is that convergence in norm implies uniform convergence on any subset of X on which \, K_x\, is bounded. However, the converse does not necessarily hold. Often the set X carries a topology, and \, K_x\, depends continuously on x\in X, in which case: convergence in norm implies uniform convergence on compact subsets of X. It is not entirely straightforwar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Different Views On RKHS
Different may refer to: Music * "Different", a song by Cass Elliot from the soundtrack of the 1970 film '' Pufnstuf'' * '' Different'', a 1989 album by Thomas Anders * '' Different'', a 2002 album by Kate Ryan * "Different", a song by Egypt Central from their eponymous 2005 album * "Different", a song by Acceptance from the 2005 album '' Phantoms'' * "Different", a 2006 song by Jamie Shaw * "Different", a song by Dreamscape from the 2007 album '' 5th Season'' * "Different", a song by Pendulum from the 2008 album ''In Silico'' * "Different", a song by Ximena Sariñana from the 2011 album Ximena Sariñana * " Different", a 2012 song by Robbie Williams * "Different", a song by No Malice from the 2013 album '' Hear Ye Him'' * "Different", a song by Winner from the 2014 album ''2014 S/S'' * "Different", a 2017 song by Micah Tyler * "Different", a song by Future and Juice Wrld from the 2018 mixtape ''Wrld on Drugs'' * "Different", a song by Burna Boy from the 2019 album ''African Gian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harmonic Analysis
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency. The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals. Generalizing these transforms to other domains is generally called Fourier analysis, although the term is sometimes used interchangeably with harmonic analysis. Harmonic analysis has become a vast subject with applications in areas as diverse as number theory, representation theory, signal processing, quantum mechanics, tidal analysis, spectral analysis, and neuroscience. The term "harmonics" originated from the Ancient Greek word ''harmonikos'', meaning "skilled in music". In physical eigenvalue problems, it began to mean waves whose frequencies are integer multiples of one another, as are the freq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Positive Definite
In mathematics, positive definiteness is a property of any object to which a bilinear form In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called '' scalars''). In other words, a bilinear form is a function that is linea ... or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular: * Positive-definite bilinear form * Positive-definite function * Positive-definite function on a group * Positive-definite functional * Positive-definite kernel * Positive-definite matrix * Positive-definite operator * Positive-definite quadratic form References *. *. {{Set index article, mathematics Quadratic forms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riesz Representation Theorem
The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism. Preliminaries and notation Let H be a Hilbert space over a field \mathbb, where \mathbb is either the real numbers \R or the complex numbers \Complex. If \mathbb = \Complex (resp. if \mathbb = \R) then H is called a (resp. a ). Every real Hilbert space can be extended to be a dense subset of a unique (up to bijective isometry) complex Hilbert space, called its complexification, which is why Hilbert spaces are often automatically assumed to be complex. Real and complex Hilbert spaces have in common many, but b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bounded Operator
In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector spaces (a special type of TVS), then L is bounded if and only if there exists some M > 0 such that for all x \in X, \, Lx\, _Y \leq M \, x\, _X. The smallest such M is called the operator norm of L and denoted by \, L\, . A linear operator between normed spaces is continuous if and only if it is bounded. The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces. Outside of functional analysis, when a function f : X \to Y is called " bounded" then this usually means that its image f(X) is a bounded subset of its codomain. A linear map has this property if and only if it is identically 0. Consequently, in functional analysis, when a linear operator is called "bounded" then it is never ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function (topology)
In mathematics, a continuous function is a function (mathematics), function such that a small variation of the argument of a function, argument induces a small variation of the Value (mathematics), value of the function. This implies there are no abrupt changes in value, known as ''Classification of discontinuities, discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on Intuition, intuitive notions of continuity and considered only continuous functions. The (ε, δ)-definition of limit, epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real number, real and complex number, complex numbers. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cartesian Closed Category
In category theory, a Category (mathematics), category is Cartesian closed if, roughly speaking, any morphism defined on a product (category theory), product of two Object (category theory), objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal category, closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum computation, quantum and classical computation. Etymology Named after René Descartes (1596–1650), French philosopher, mathematician, and scientist, whose formulation of analytic geometry gave rise to the concept of Cartesian product, which was later generalized to the notion of categorical product. Definition The category C is called Cartesian closed iff it satisfies the following three propert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real-valued Function
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain. Real-valued functions of a real variable (commonly called ''real functions'') and real-valued functions of several real variables are the main object of study of calculus and, more generally, real analysis. In particular, many function spaces consist of real-valued functions. Algebraic structure Let (X,) be the set of all functions from a set to real numbers \mathbb R. Because \mathbb R is a field, (X,) may be turned into a vector space and a commutative algebra over the reals with the following operations: *f+g: x \mapsto f(x) + g(x) – vector addition *\mathbf: x \mapsto 0 – additive identity *c f: x \mapsto c f(x),\quad c \in \mathbb R – scalar multiplication *f g: x \mapsto f(x)g(x) – pointwise multiplication These operations extend to partial functions from to \mathbb R, with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
In mathematics, a set is a collection of different things; the things are '' elements'' or ''members'' of the set and are typically mathematical objects: numbers, symbols, points in space, lines, other geometric shapes, variables, or other sets. A set may be finite or infinite. There is a unique set with no elements, called the empty set; a set with a single element is a singleton. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. Context Before the end of the 19th century, sets were not studied specifically, and were not clearly distinguished from sequences. Most mathematicians considered infinity as potentialmeaning that it is the result of an endless processand were reluctant to consider infinite sets, that is sets whose number of members is not a natural number. Specific ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Functions
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if for every x_0 in its domain, its Taylor series about x_0 converges to the function in some neighborhood of x_0 . This is stronger than merely being infinitely differentiable at x_0 , and therefore having a well-defined Taylor series; the Fabius function provides an example of a function that is infinitely differentiable but not analytic. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \cdots in which the coefficients a_0, a_1, \dots ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Empirical Risk Minimization
In statistical learning theory, the principle of empirical risk minimization defines a family of learning algorithms based on evaluating performance over a known and fixed dataset. The core idea is based on an application of the law of large numbers; more specifically, we cannot know exactly how well a predictive algorithm will work in practice (i.e. the "true risk") because we do not know the true distribution of the data, but we can instead estimate and optimize the performance of the algorithm on a known set of training data. The performance over the known set of training data is referred to as the "empirical risk". Background The following situation is a general setting of many supervised learning problems. There are two spaces of objects X and Y and we would like to learn a function \ h: X \to Y (often called ''hypothesis'') which outputs an object y \in Y, given x \in X. To do so, there is a ''training set'' of n examples \ (x_1, y_1), \ldots, (x_n, y_n) where x_i \in X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Combination
In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' and ''y'' would be any expression of the form ''ax'' + ''by'', where ''a'' and ''b'' are constants). The concept of linear combinations is central to linear algebra and related fields of mathematics. Most of this article deals with linear combinations in the context of a vector space over a field (mathematics), field, with some generalizations given at the end of the article. Definition Let ''V'' be a vector space over the field ''K''. As usual, we call elements of ''V'' ''vector space, vectors'' and call elements of ''K'' ''scalar (mathematics), scalars''. If v1,...,v''n'' are vectors and ''a''1,...,''a''''n'' are scalars, then the ''linear combination of those vectors with those scalars as coefficients'' is :a_1 \mathbf v_1 + a_2 \mathbf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]