HOME





Remez Inequality
In mathematics, the Remez inequality, discovered by the Soviet mathematician Evgeny Yakovlevich Remez , gives a bound on the sup norms of certain polynomials, the bound being attained by the Chebyshev polynomials. The inequality Let ''σ'' be an arbitrary fixed positive number. Define the class of polynomials π''n''(''σ'') to be those polynomials ''p'' of degree ''n'' for which :, p(x), \le 1 on some set of measure ≥ 2 contained in the closed interval ��1, 1+''σ'' Then the Remez inequality states that :\sup_ \left\, p\right\, _\infty = \left\, T_n\right\, _\infty where ''T''''n''(''x'') is the Chebyshev polynomial of degree ''n'', and the supremum norm is taken over the interval ��1, 1+''σ'' Observe that ''T''''n'' is increasing on , +\infty/math>, hence : \, T_n\, _\infty = T_n(1+\sigma). The R.i., combined with an estimate on Chebyshev polynomials, implies the following corollary: If ''J'' ⊂ R is a finite interval, and ''E'' ⊂ ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pál Turán
Pál Turán (; 18 August 1910 – 26 September 1976) also known as Paul Turán, was a Hungarian mathematician who worked primarily in extremal combinatorics. In 1940, because of his Jewish origins, he was arrested by History of the Jews in Hungary#The Holocaust, the Nazis and sent to a Labour service (Hungary), labour camp in Transylvania, later being transferred several times to other camps. While imprisoned, Turán came up with some of his best theories, which he was able to publish after the war. Turán had a long collaboration with fellow Hungarian mathematician Paul Erdős, lasting 46 years and resulting in 28 joint papers. Biography Early years Turán was born into a Jews of Hungary, Hungarian Jewish family in Budapest on 18 August 1910. Pál's outstanding mathematical abilities showed early, already in secondary school he was the best student. At the same period of time, Turán and Pál Erdős were famous answerers in the journal ''KöMaL''. On 1 September 1930, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measurable Set
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to Ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Rad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coefficient
In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless quantity, number without units, in which case it is known as a numerical factor. It may also be a constant (mathematics), constant with units of measurement, in which it is known as a constant multiplier. In general, coefficients may be any mathematical expression, expression (including Variable (mathematics), variables such as , and ). When the combination of variables and constants is not necessarily involved in a product (mathematics), product, it may be called a ''parameter''. For example, the polynomial 2x^2-x+3 has coefficients 2, −1, and 3, and the powers of the variable x in the polynomial ax^2+bx+c have coefficient parameters a, b, and c. A , also known as constant term or simply constant, is a quantity either implicitly attach ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

George Pólya
George Pólya (; ; December 13, 1887 – September 7, 1985) was a Hungarian-American mathematician. He was a professor of mathematics from 1914 to 1940 at ETH Zürich and from 1940 to 1953 at Stanford University. He made fundamental contributions to combinatorics, number theory, numerical analysis and probability theory. He is also noted for his work in heuristics and mathematics education. He has been described as one of The Martians (scientists), The Martians, an informal category which included one of his most famous students at ETH Zurich, John von Neumann. Life and works Pólya was born in Budapest, Austria-Hungary, to Anna Deutsch and Jakab Pólya, History of the Jews in Hungary, Hungarian Jews who had converted to Christianity in 1886. Although his parents were religious and he was baptized into the Catholic Church upon birth, George eventually grew up to be an agnostic. He received a PhD under Lipót Fejér in 1912, at Eötvös Loránd University. He was a professor o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exponential Sum
In mathematics, an exponential sum may be a finite Fourier series (i.e. a trigonometric polynomial), or other finite sum formed using the exponential function, usually expressed by means of the function :e(x) = \exp(2\pi ix).\, Therefore, a typical exponential sum may take the form :\sum_n e(x_n), summed over a finite sequence of real numbers ''x''''n''. Formulation If we allow some real coefficients ''a''''n'', to get the form :\sum_n a_n e(x_n) it is the same as allowing exponents that are complex numbers. Both forms are certainly useful in applications. A large part of twentieth century analytic number theory was devoted to finding good estimates for these sums, a trend started by basic work of Hermann Weyl in diophantine approximation. Estimates The main thrust of the subject is that a sum :S=\sum_n e(x_n) is ''trivially'' estimated by the number ''N'' of terms. That is, the absolute value :, S, \le N\, by the triangle inequality, since each summand has absolute v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fedor Nazarov
Fedor (Fedya) L'vovich Nazarov (; born 1967) is a Russian mathematician working in the United States. He has done research in mathematical analysis and its applications, in particular in functional analysis and classical analysis (including harmonic analysis, Fourier analysis, and complex analytic functions). Biography Fedor Nazarov received his Ph.D. from St Petersburg University in 1993, with Victor Petrovich Havin as advisor. Before his Ph.D. studies, Nazarov received the Gold Medal and Special prize at the International Mathematics Olympiad in 1984. Nazarov worked at Michigan State University in East Lansing from 1995 to 2007 and at the University of Wisconsin–Madison from 2007 to 2011. Since 2011, he has been a full professor of Mathematics at Kent State University. Awards Nazarov was awarded the Salem Prize in 1999 "for his work in harmonic analysis, in particular, the uncertainty principle, and his contribution to the development of Bellman function methods". ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function (mathematics)
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the Domain of a function, domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. History of the function concept, Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable function, differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Proof
A mathematical proof is a deductive reasoning, deductive Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inequality (mathematics)
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than and greater than (denoted by and , respectively the less-than sign, less-than and greater-than sign, greater-than signs). Notation There are several different notations used to represent different kinds of inequalities: * The notation ''a'' ''b'' means that ''a'' is greater than ''b''. In either case, ''a'' is not equal to ''b''. These relations are known as strict inequalities, meaning that ''a'' is strictly less than or strictly greater than ''b''. Equality is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: * The notation ''a'' ≤ ''b'' or ''a'' ⩽ ''b'' or ''a'' ≦ ''b'' means that ''a'' is less than or equal to ''b'' (or, equivalently, at most ''b'', or no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Corollary
In mathematics and logic, a corollary ( , ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another proposition; it might also be used more casually to refer to something which naturally or incidentally accompanies something else. Overview In mathematics, a corollary is a theorem connected by a short proof to an existing theorem. The use of the term ''corollary'', rather than ''proposition'' or ''theorem'', is intrinsically subjective. More formally, proposition ''B'' is a corollary of proposition ''A'', if ''B'' can be readily deduced from ''A'' or is self-evident from its proof. In many cases, a corollary corresponds to a special case of a larger theorem, which makes the theorem easier to use and apply, even though its importance is generally considered to be secondary to that of the theorem. In particular, ''B'' is unlikely to be te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Evgeny Yakovlevich Remez
Evgeny Yakovlevich Remez (sometimes spelled as Evgenii Yakovlevich Remez, ; 1895 in Mstislavl, now Belarus – 1975 in Kyiv, now Ukraine) was a Soviet mathematician. He is known for his work in the constructive function theory, in particular, for the Remez algorithm The Remez algorithm or Remez exchange algorithm, published by Evgeny Yakovlevich Remez in 1934, is an iterative algorithm used to find simple approximations to functions, specifically, approximations by functions in a Chebyshev space that are the ... and the Remez inequality. His doctoral students include Boris Korenblum. References *V K Dzyadyk, Yu A Mitropol'skii and A M Samoilenko, Evgenii Yakovlevich Remez (on the centenary of his birth) (Ukrainian), Ukrain. Mat. Zh. 48 (2) (1996), 285-286. *Yu A Mitropol'skii, V K Dzyadyk and V T Gavrilyuk, Evgenii Yakovlevich Remez (on the occasion of the ninetieth anniversary of his birth) (Russian), Ukrain. Mat. Zh. 38 (4) (1986), 539-540. *Yu A Mitropol'skii, V K Dzjadyk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]