Regular Temperament
A regular temperament is any tempered system of musical tuning such that each frequency ratio is obtainable as a product of powers of a finite number of generators, or generating frequency ratios. For instance, in 12-TET, the system of music most commonly used in the Western world, the generator is a tempered fifth (700 cents), which is the basis behind the circle of fifths. When only two generators are needed, with one of them the octave, this is sometimes called a "linear temperament". The best-known example of linear temperaments are meantone temperaments, where the generating intervals are usually given in terms of a slightly flattened fifth and the octave. Other linear temperaments include the schismatic temperament of Hermann von Helmholtz and miracle temperament. Mathematical description If the generators are all the prime numbers up to a given prime ''p'', we have what is called ''p''- limit just intonation. Sometimes some irrational number close to one of these pri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quarter-comma Meantone
Quarter-comma meantone, or -comma meantone, was the most common meantone temperament in the sixteenth and seventeenth centuries, and was sometimes used later. In this system the perfect fifth is flattened by one quarter of a syntonic comma with respect to its just intonation used in Pythagorean tuning ( frequency ratio the result is \tfrac \times \left(\tfrac\right)^ = \sqrt \approx 1.49535, or a fifth of 696.578 cents. (The 12th power of that value is 125, whereas 7 octaves is 128, and so falls 41.059 cents short.) This fifth is then iterated to generate the diatonic scale and other notes of the temperament. The purpose is to obtain justly intoned major thirds (with a frequency ratio equal to It was described by Pietro Aron in his ''Toscanello de la Musica'' of 1523, by saying the major thirds should be tuned to be "sonorous and just, as united as possible". Later theorists Gioseffo Zarlino and Francisco de Salinas described the tuning with mathematical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Comma (music)
In music theory, a comma is a very small interval (music), interval, the difference resulting from Musical tuning, tuning one note (music), note two different ways. Traditionally, there are two most common commata; the syntonic comma (80:81), "the difference between a just intonation, just major 3rd and four just perfect 5ths less two octaves", and the Pythagorean comma (524288:531441, approximately 73:74), "the difference between twelve 5ths and seven octaves". The word ''comma'' used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F tuned using the D-based Pythagorean tuning system, and another F tuned using the D-based quarter-comma meantone tuning system. Pitches separated by either comma are considered the same note because conventional notation does not distinguish Pythagorean intervals from 5-limit intervals. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kernel (linear Algebra)
In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. That is, given a linear map between two vector spaces and , the kernel of is the vector space of all elements of such that , where denotes the zero vector in , or more symbolically: \ker(L) = \left\ = L^(\mathbf). Properties The kernel of is a linear subspace of the domain .Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in , , and Strang's lectures. In the linear map L : V \to W, two elements of have the same image in if and only if their difference lies in the kernel of , that is, L\left(\mathbf_1\right) = L\left(\mathbf_2\right) \quad \text \quad L\left(\mathbf_1-\mathbf_2\right) = \mathbf. From this, it follows ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multilinear Algebra
Multilinear algebra is the study of Function (mathematics), functions with multiple vector space, vector-valued Argument of a function, arguments, with the functions being Linear map, linear maps with respect to each argument. It involves concepts such as Matrix (mathematics), matrices, tensors, multivectors, System of linear equations, systems of linear equations, Higher-dimensional space, higher-dimensional spaces, Determinant, determinants, inner product, inner and outer product, outer products, and Dual space, dual spaces. It is a mathematical tool used in engineering, machine learning, physics, and mathematics. Origin While many theoretical concepts and applications involve Vector space, single vectors, mathematicians such as Hermann Grassmann considered structures involving pairs, triplets, and multivectors that generalize Vector (mathematics and physics), vectors. With multiple combinational possibilities, the space of multivectors expands to 2''n'' dimensions, where ''n'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathematics), matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as line (geometry), lines, plane (geometry), planes and rotation (mathematics), rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to Space of functions, function spaces. Linear algebra is also used in most sciences and fields of engineering because it allows mathematical model, modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Image (mathematics)
In mathematics, for a function f: X \to Y, the image of an input value x is the single output value produced by f when passed x. The preimage of an output value y is the set of input values that produce y. More generally, evaluating f at each Element (mathematics), element of a given subset A of its Domain of a function, domain X produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain Y is the set of all elements of X that map to a member of B. The image of the function f is the set of all output values it may produce, that is, the image of X. The preimage of f is the preimage of the codomain Y. Because it always equals X (the domain of f), it is rarely used. Image and inverse image may also be defined for general Binary relation#Operations, binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a Function (mat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set (mathematics)
In mathematics, a set is a collection of different things; the things are '' elements'' or ''members'' of the set and are typically mathematical objects: numbers, symbols, points in space, lines, other geometric shapes, variables, or other sets. A set may be finite or infinite. There is a unique set with no elements, called the empty set; a set with a single element is a singleton. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. Context Before the end of the 19th century, sets were not studied specifically, and were not clearly distinguished from sequences. Most mathematicians considered infinity as potentialmeaning that it is the result of an endless processand were reluctant to consider infinite sets, that is sets whose number of members is not a natural number. Specific ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Map (mathematics)
In mathematics, a map or mapping is a function (mathematics), function in its general sense. These terms may have originated as from the process of making a map, geographical map: ''mapping'' the Earth surface to a sheet of paper. The term ''map'' may be used to distinguish some special types of functions, such as homomorphisms. For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. In category theory, a map may refer to a morphism. The term ''transformation'' can be used interchangeably, but ''transformation (function), transformation'' often refers to a function from a set to itself. There are also a few less common uses in logic and graph theory. Maps as functions In many branches of mathematics, the term ''map'' is used to mean a Function (mathematics), function, sometimes with a specific property of particular importance to that branch. For instance, a "map" is a "continuous f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alpha Scale
The (alpha) scale is a non-octave-repeating musical scale invented by Wendy Carlos and first used on her album ''Beauty in the Beast'' (1986). It is derived from approximating just intervals using multiples of a single interval, but without requiring (as temperaments normally do) an octave (2:1). It may be approximated by dividing the perfect fifth (3:2) into nine equal steps, with frequency ratio \ \left( \tfrac \right)^\ , or by dividing the minor third (6:5) into four frequency ratio steps of \ \left( \tfrac \right)^ ~. The size of this scale step may also be precisely derived from using 9:5 B, 1017.60 cents, to approximate the interval E, 315.64 cents, . : Carlos' (alpha) scale arises from ... taking a value for the scale degree so that nine of them approximate a 3:2 perfect fifth, five of them approximate a 5:4 major third, and four of them approximate a 6:5 minor third. In order to make the approximation as good as possible we minimize the mean s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wendy Carlos
Wendy Carlos (born Walter Carlos; November 14, 1939) is an American musician and composer known for electronic music and film scores. Born and raised in Rhode Island, Carlos studied physics and music at Brown University before moving to New York City in 1962 to study music composition at Columbia University. Studying and working with various electronic musicians and technicians at the city's Computer Music Center, Columbia-Princeton Electronic Music Center, she helped in the development of the Moog synthesizer, Robert Moog's first commercially available keyboard instrument. Carlos came to prominence with ''Switched-On Bach'' (1968), an album of music by Johann Sebastian Bach performed on a Moog synthesizer, which helped popularize its use in the 1970s and won her three Grammy Awards. Its commercial success led to several more albums, including further synthesized classical music adaptations, and experimental music, experimental and ambient music. She composed the score to two ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rank Of An Abelian Group
In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group ''A'' is the cardinality of a maximal linearly independent subset. The rank of ''A'' determines the size of the largest free abelian group contained in ''A''. If ''A'' is torsion-free then it embeds into a vector space over the rational numbers of dimension rank ''A''. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup. Torsion-free abelian groups of rank 1 have been completely classified. However, the theory of abelian groups of higher rank is more involved. The term rank has a different meaning in the context of elementary abelian groups. Definition A subset of an abelian group ''A'' is linearly independent (over Z) if the only linear combination of these elements that is equal to zero is trivial: if : \sum_\alpha n_\alpha a_\alpha = 0, \quad n_\alpha\in\mathbb, where all but finitely man ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |