HOME





Real Algebraic Geometry
In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynomial mappings). Semialgebraic geometry is the study of semialgebraic sets, i.e. real-number solutions to algebraic inequalities with-real number coefficients, and mappings between them. The most natural mappings between semialgebraic sets are semialgebraic mappings, i.e., mappings whose graphs are semialgebraic sets. Terminology Nowadays the words 'semialgebraic geometry' and 'real algebraic geometry' are used as synonyms, because real algebraic sets cannot be studied seriously without the use of semialgebraic sets. For example, a projection of a real algebraic set along a coordinate axis need not be a real algebraic set, but it is always a semialgebraic set: this is the Tarski–Seidenberg theorem. Related fields are o-minimal theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Function
In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are: * f(x) = 1/x * f(x) = \sqrt * f(x) = \frac Some algebraic functions, however, cannot be expressed by such finite expressions (this is the Abel–Ruffini theorem). This is the case, for example, for the Bring radical, which is the function implicitly defined by : f(x)^5+f(x)+x = 0. In more precise terms, an algebraic function of degree in one variable is a function y = f(x), that is continuous in its domain and satisfies a polynomial equation of positive degree : a_n(x)y^n+a_(x)y^+\cdots+a_0(x)=0 where the coefficients are polynomial functions of , with integer coefficients. It can be shown that the same class ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moment Problem
In mathematics, a moment problem arises as the result of trying to invert the mapping that takes a measure \mu to the sequence of moments :m_n = \int_^\infty x^n \,d\mu(x)\,. More generally, one may consider :m_n = \int_^\infty M_n(x) \,d\mu(x)\,. for an arbitrary sequence of functions M_n. Introduction In the classical setting, \mu is a measure on the real line, and M is the sequence \. In this form the question appears in probability theory, asking whether there is a probability measure having specified mean, variance and so on, and whether it is unique. There are three named classical moment problems: the Hamburger moment problem in which the support of \mu is allowed to be the whole real line; the Stieltjes moment problem, for ,\infty); and the Hausdorff moment problem for a bounded interval, which without loss of generality may be taken as ,1/math>. The moment problem also extends to complex analysis as the trigonometric moment problem in which the Hankel matric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Algebraic Geometry
In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis. Complex geometry sits at the intersection of algebraic geometry, differential geometry, and complex analysis, and uses tools from all three areas. Because of the blend of techniques and ideas from various areas, problems in complex geometry are often more tractable or concrete than in general. For example, the classification of complex manifolds and complex algebraic varieties through the minimal model program and the construction of moduli spaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and p-adic number, ''p''-adic integers. Commutative algebra is the main technical tool of algebraic geometry, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. Several concepts of commutative algebras have been developed in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert's Seventeenth Problem
Hilbert's seventeenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It concerns the expression of positive definite rational functions as sums of quotients of squares. The original question may be reformulated as: * Given a multivariate polynomial that takes only non-negative values over the reals, can it be represented as a sum of squares of rational functions? Hilbert's question can be restricted to homogeneous polynomials of even degree, since a polynomial of odd degree changes sign, and the homogenization of a polynomial takes only nonnegative values if and only if the same is true for the polynomial. Motivation The formulation of the question takes into account that there are non-negative polynomials, for example :f(x,y,z)=z^6+x^4y^2+x^2y^4-3x^2y^2z^2, which cannot be represented as a sum of squares of other polynomials. In 1888, Hilbert showed that every non-negative homogeneous polynomial in ''n'' vari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polynomial SOS
In mathematics, a form (i.e. a homogeneous polynomial) ''h''(''x'') of degree 2''m'' in the real ''n''-dimensional vector ''x'' is sum of squares of forms (SOS) if and only if there exist forms g_1(x),\ldots,g_k(x) of degree ''m'' such that h(x) = \sum_^k g_i(x)^2 . Every form that is SOS is also a positive polynomial, and although the converse is not always true, Hilbert proved that for ''n'' = 2, 2''m'' = 2, or ''n'' = 3 and 2''m'' = 4 a form is SOS if and only if it is positive. The same is also valid for the analog problem on positive ''symmetric'' forms. Although not every form can be represented as SOS, explicit sufficient conditions for a form to be SOS have been found. Moreover, every real nonnegative form can be approximated as closely as desired (in the l_1-norm of its coefficient vector) by a sequence of forms \ that are SOS. Square matricial representation (SMR) To establish whether a form is SOS amounts to solving a convex optimization problem. Indeed, any ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Positive Polynomial
In mathematics, a positive polynomial (respectively non-negative polynomial) on a particular set is a polynomial whose values are positive (respectively non-negative) on that set. Precisely, Let p be a polynomial in n variables with real coefficients and let S be a subset of the n-dimensional Euclidean space \mathbb^n. We say that: * p is positive on S if p(x)>0 for every x in S. * p is non-negative on S if p(x)\ge 0 for every x in S. Positivstellensatz (and nichtnegativstellensatz) For certain sets S, there exist algebraic descriptions of all polynomials that are positive (resp. non-negative) on S. Such a description is a positivstellensatz (resp. nichtnegativstellensatz). The importance of Positivstellensatz theorems in computation arises from its ability to transform problems of polynomial optimization into semidefinite programming problems, which can be efficiently solved using convex optimization techniques. Examples of positivstellensatz (and nichtnegativstellensatz) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Closed Field
In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. Definition A real closed field is a field ''F'' in which any of the following equivalent conditions is true: #''F'' is elementarily equivalent to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in ''F'' if and only if it is true in the reals. #There is a total order on ''F'' making it an ordered field such that, in this ordering, every positive element of ''F'' has a square root in ''F'' and any polynomial of odd degree with coefficients in ''F'' has at least one root in ''F''. #''F'' is a formally real field such that every polynomial of odd degree with coefficients in ''F'' has at least one root in ''F'', and for every element ''a'' o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordered Ring
In abstract algebra, an ordered ring is a (usually commutative) ring ''R'' with a total order ≤ such that for all ''a'', ''b'', and ''c'' in ''R'': * if ''a'' ≤ ''b'' then ''a'' + ''c'' ≤ ''b'' + ''c''. * if 0 ≤ ''a'' and 0 ≤ ''b'' then 0 ≤ ''ab''. Examples Ordered rings are familiar from arithmetic. Examples include the integers, the rationals and the real numbers. (The rationals and reals in fact form ordered fields.) The complex numbers, in contrast, do not form an ordered ring or field, because there is no inherent order relationship between the elements 1 and ''i''. Positive elements In analogy with the real numbers, we call an element ''c'' of an ordered ring ''R'' positive if 0 < ''c'', and negative if ''c'' < 0. 0 is considered to be neither positive nor negative. The set of positive elements of an ordered ring ''R'' is often denoted by ''R''+. An alternative notation, favored in some disciplines, is to use ''R''+ for the set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordered Field
In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard orderings. Every subfield of an ordered field is also an ordered field in the inherited order. Every ordered field contains an ordered subfield that is isomorphic to the rational numbers. Every Dedekind-complete ordered field is isomorphic to the reals. Squares are necessarily non-negative in an ordered field. This implies that the complex numbers cannot be ordered since the square of the imaginary unit ''i'' is (which is negative in any ordered field). Finite fields cannot be ordered. Historically, the axiomatization of an ordered field was abstracted gradually from the real numbers, by mathematicians including David Hilbert, Otto Hölder and Hans Hahn. This grew eventually into the Artin–Schreier theory of ordered fields and f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]