HOME





Rank Of A Group
In the mathematical subject of group theory, the rank of a group ''G'', denoted rank(''G''), can refer to the smallest cardinality of a generating set for ''G'', that is : \operatorname(G)=\min\. If ''G'' is a finitely generated group, then the rank of ''G'' is a non-negative integer. The notion of rank of a group is a group-theoretic analog of the notion of dimension of a vector space. Indeed, for ''p''-groups, the rank of the group ''P'' is the dimension of the vector space ''P''/Φ(''P''), where Φ(''P'') is the Frattini subgroup. The rank of a group is also often defined in such a way as to ensure subgroups have rank less than or equal to the whole group, which is automatically the case for dimensions of vector spaces, but not for groups such as affine groups. To distinguish these different definitions, one sometimes calls this rank the subgroup rank. Explicitly, the subgroup rank of a group ''G'' is the maximum of the ranks of its subgroups: : \operatorname(G)=\max_ \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alternating Group
In mathematics, an alternating group is the Group (mathematics), group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or Basic properties For , the group A''n'' is the commutator subgroup of the symmetric group S''n'' with Index of a subgroup, index 2 and has therefore factorial, ''n''!/2 elements. It is the kernel (algebra), kernel of the signature group homomorphism explained under symmetric group. The group A''n'' is abelian group, abelian if and only if and simple group, simple if and only if or . A5 is the smallest non-abelian simple group, having order of a group, order 60, and thus the smallest non-solvable group. The group A4 has the Klein four-group V as a proper normal subgroup, namely the identity and the double transpositions , that is the kernel of the surjection of A4 onto . We have the exact sequence . In Galois theory, this m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wilhelm Magnus
Hans Heinrich Wilhelm Magnus, known as Wilhelm Magnus (5 February 1907 in Berlin, Germany – 15 October 1990 in New Rochelle, New York), was a German-American mathematician. He made important contributions in combinatorial group theory, Lie algebras, mathematical physics, elliptic functions, and the study of tessellations. Biography In 1931, Magnus received his PhD from the University of Frankfurt in Germany. His thesis, written under the direction of Max Dehn, was entitled ''Über unendlich diskontinuierliche Gruppen von einer definierenden Relation (der Freiheitssatz)''. Magnus was a faculty member in Frankfurt from 1933 until 1938. He refused to join the Nazi Party and, as a consequence, was not allowed to hold an academic post during World War II. In 1947, he became a professor at the University of Göttingen. In 1948, he emigrated to the United States to collaborate on the Bateman Manuscript Project as a co-editor while a visiting professor at the California Institute of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primitive Element (co-algebra)
Primitive may refer to: Mathematics * Primitive element (field theory) * Primitive element (finite field) * Primitive cell (crystallography) * Primitive notion, axiomatic systems * Primitive polynomial (other), one of two concepts * Primitive function or antiderivative, ' = ''f'' * Primitive permutation group * Primitive root of unity; See Root of unity * Primitive triangle, an integer triangle whose sides have no common prime factor Sciences * Primitive (phylogenetics), characteristic of an early stage of development or evolution * Primitive equations, a set of nonlinear differential equations that are used to approximate atmospheric flow * Primitive change, a general term encompassing a number of basic molecular alterations in the course of a chemical reaction Computing * Cryptographic primitives, low-level cryptographic algorithms frequently used to build computer security systems * Geometric primitive, the simplest kinds of figures in computer graphics * Language pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


One-relator Group
In the mathematical subject of group theory, a one-relator group is a group given by a group presentation with a single defining relation. One-relator groups play an important role in geometric group theory by providing many explicit examples of finitely presented groups. Formal definition A one-relator group is a group ''G'' that admits a group presentation of the form where ''X'' is a set (in general possibly infinite), and where r\in F(X) is a freely and cyclically reduced word. If ''Y'' is the set of all letters x\in X that appear in ''r'' and X'=X\setminus Y then :G=\langle Y\mid r=1\, \rangle \ast F(X'). For that reason ''X'' in () is usually assumed to be finite where one-relator groups are discussed, in which case () can be rewritten more explicitly as where X=\ for some integer n\ge 1. Freiheitssatz Let ''G'' be a one-relator group given by presentation () above. Recall that ''r'' is a freely and cyclically reduced word in ''F''(''X''). Let y\in X be a lett ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Free Product
In mathematics, specifically group theory, the free product is an operation that takes two groups ''G'' and ''H'' and constructs a new The result contains both ''G'' and ''H'' as subgroups, is generated by the elements of these subgroups, and is the “ universal” group having these properties, in the sense that any two homomorphisms from ''G'' and ''H'' into a group ''K'' factor uniquely through a homomorphism from to ''K''. Unless one of the groups ''G'' and ''H'' is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group (the universal group with a given set of generators). The free product is the coproduct in the category of groups. That is, the free product plays the same role in group theory that disjoint union plays in set theory, or that the direct sum plays in module theory. Even if the groups are commutative, their free product is not, unless one of the two groups is the trivial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grushko Theorem
In the mathematical subject of group theory, the Grushko theorem or the Grushko–Neumann theorem is a theorem stating that the rank (that is, the smallest cardinality of a generating set) of a free product of two groups is equal to the sum of the ranks of the two free factors. The theorem was first obtained in a 1940 article of Grushko and then, independently, in a 1943 article of Neumann. Statement of the theorem Let ''A'' and ''B'' be finitely generated groups and let ''A''∗''B'' be the free product of ''A'' and ''B''. Then :rank(''A''∗''B'') = rank(''A'') + rank(''B''). It is obvious that rank(''A''∗''B'') ≤ rank(''A'') + rank(''B'') since if X is a finite generating set of ''A'' and ''Y'' is a finite generating set of ''B'' then ''X''∪''Y'' is a generating set for ''A''∗''B'' and that , ''X'' ∪ ''Y'', ≤ , ''X'', + , ''Y'', . The opposite inequality, rank(''A''∗''B'') ≥ rank(''A'') + rank(''B''), requires proof. Grushko, but not Neumann, proved a mor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hanna Neumann Conjecture
In the mathematical subject of group theory, the Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture (see below) was proved independently by Joel Friedman and by Igor Mineyev. In 2017, a third proof of the Strengthened Hanna Neumann conjecture, based on homological arguments inspired by pro-p-group considerations, was published by Andrei Jaikin-Zapirain. History The subject of the conjecture was originally motivated by a 1954 theorem of Howson who proved that the intersection of any two finitely generated subgroups of a free group is always finitely generated, that is, has finite rank. In this paper Howson proved that if ''H'' and ''K'' are subgroups of a free group ''F''(''X'') of finite ranks ''n'' ≥ 1 and ''m'' ≥ 1 then the rank ''s'' of ''H'' ∩ ''K'' satisfies: : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Publicationes Mathematicae Debrecen
''Publicationes Mathematicae Debrecen'' is a Hungarian mathematical journal, edited and published in Debrecen, at the Mathematical Institute of the University of Debrecen. It was founded by Alfréd Rényi, Tibor Szele Tibor Szele (21 June 1918 – 5 April 1955) Hungarian mathematician, working in combinatorics and abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which ..., and Ottó Varga in 1950. The current editor-in-chief is Lajos Tamássy. External links * The journal'homepageOn-line papers Mathematics journals University of Debrecen {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hanna Neumann
Johanna (Hanna) Neumann (née von Caemmerer; 12 February 1914 – 14 November 1971) was a German-born mathematician who worked on group theory. Biography Neumann was born on 12 February 1914 in Lankwitz, Steglitz-Zehlendorf (today a district of Berlin), Germany. She was the youngest of three children of Hermann and Katharina von Caemmerer. As a result of her father's death in the first days of the First World War, the family income was small, and from the age of thirteen she was coaching school children. After two years at a private school she entered the Auguste-Viktoria-Schule, a girls' grammar school ( Realgymnasium), in 1922. She graduated in early 1932 and then entered the University of Berlin. The lecture courses in mathematics that she took in her first year were: Introduction to Higher Mathematics given by Georg Feigl; Analytical Geometry and Projective Geometry both given by Ludwig Bieberbach, Differential and Integral Calculus given by Erhard Schmidt, and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heegaard Genus
In the mathematical field of geometric topology, a Heegaard splitting () is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebodies. Definitions Let ''V'' and ''W'' be handlebodies of genus ''g'', and let ƒ be an orientation reversing homeomorphism from the boundary of ''V'' to the boundary of ''W''. By gluing ''V'' to ''W'' along ƒ we obtain the compact oriented 3-manifold : M = V \cup_f W. Every closed, orientable three-manifold may be so obtained; this follows from deep results on the triangulability of three-manifolds due to Moise. This contrasts strongly with higher-dimensional manifolds which need not admit smooth or piecewise linear structures. Assuming smoothness the existence of a Heegaard splitting also follows from the work of Smale about handle decompositions from Morse theory. The decomposition of ''M'' into two handlebodies is called a Heegaard splitting, and their common boundary ''H'' is called the Heegaard su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

3-manifold
In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane (geometry), plane (a tangent plane) to a small and close enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below. Principles Definition A topological space M is a 3-manifold if it is a second-countable Hausdorff space and if every point in M has a neighbourhood (mathematics), neighbourhood that is homeomorphic to Euclidean 3-space. Mathematical theory of 3-manifolds The topological, Piecewise linear manifold, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds. Phenomena in three dimensions can be strikingly different from phenomena in other dim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]