Ramanujan Number
   HOME





Ramanujan Number
1729 is the natural number following 1728 and preceding 1730. It is the first nontrivial taxicab number, expressed as the sum of two cubic positive integers in two different ways. It is known as the Ramanujan number or Hardy–Ramanujan number after G. H. Hardy and Srinivasa Ramanujan. As a natural number 1729 is composite, the squarefree product of three prime numbers 7 × 13 × 19. It has as factors 1, 7, 13, 19, 91, 133, 247, and 1729. It is the third Carmichael number, and the first Chernick–Carmichael number. Furthermore, it is the first in the family of absolute Euler pseudoprimes, a subset of Carmichael numbers. 1729 is divisible by 19, the sum of its digits, making it a harshad number in base 10. 1729 is the dimension of the Fourier transform on which the fastest known algorithm for multiplying two numbers is based. This is an example of a galactic algorithm. 1729 can be expressed as the quadratic form. Investigating pairs of its distinct integer-valued ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dodecagonal Number
In mathematics, a dodecagonal number is a figurate number that represents a dodecagon. The dodecagonal number for ''n'' is given by the formula :D_=5n^2 - 4n The first few dodecagonal numbers are: : 0, 1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, 672, 793, 924, 1065, 1216, 1377, 1548, 1729, ... Properties *The dodecagonal number for ''n'' can be calculated by adding the square of ''n'' to four times the (''n'' - 1)th pronic number, or to put it algebraically, D_n = n^2 + 4(n^2 - n). *Dodecagonal numbers consistently alternate parity, and in base 10, their units place digits follow the pattern 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. *By the Fermat polygonal number theorem, every number is the sum of at most 12 dodecagonal numbers. *D_n is the sum of the first n natural numbers congruent to 1 mod 10. *D_ is the sum of all odd numbers from 4n+1 to 6n+1. Sum of reciprocals A formula for the sum of the reciprocals of the dodecagonal numbers is given by \sum_^\frac=\frac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sum Of Two Cubes
In mathematics, the sum of two cubes is a cubed number added to another cubed number. Factorization Every sum of cubes may be factored according to the identity a^3 + b^3 = (a + b)(a^2 - ab + b^2) in elementary algebra. Binomial numbers generalize this factorization to higher odd powers. Proof Starting with the expression, a^2-ab+b^2 and multiplying by (a+b)(a^2-ab+b^2) = a(a^2-ab+b^2) + b(a^2-ab+b^2). distributing ''a'' and ''b'' over a^2-ab+b^2, a^3 - a^2 b + ab^2 + a^2b - ab^2 + b^3 and canceling the like terms, a^3 + b^3. Similarly for the difference of cubes, \begin (a-b)(a^2+ab+b^2) & = a(a^2+ab+b^2) - b(a^2+ab+b^2) \\ & = a^3 + a^2 b + ab^2 \; - a^2b - ab^2 - b^3 \\ & = a^3 - b^3. \end "SOAP" mnemonic The mnemonic "SOAP", short for "Same, Opposite, Always Positive", helps recall of the signs: : Fermat's last theorem Fermat's last theorem in the case of exponent 3 states that the sum of two non-zero integer cubes does not result in a non-zero integer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


World Scientific
World Scientific Publishing is an academic publisher of scientific, technical, and medical books and journals headquartered in Singapore. The company was founded in 1981. It publishes about 600 books annually, with more than 170 journals in various fields. In 1995, World Scientific co-founded the London-based Imperial College Press together with the Imperial College of Science, Technology and Medicine. Company structure The company head office is in Singapore. The Chairman and Editor-in-Chief is Dr Phua Kok Khoo, while the Managing Director is Doreen Liu. The company was co-founded by them in 1981. Imperial College Press In 1995 the company co-founded Imperial College Press, specializing in engineering, medicine and information technology Information technology (IT) is a set of related fields within information and communications technology (ICT), that encompass computer systems, software, programming languages, data processing, data and information processing, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Internet Archive
The Internet Archive is an American 501(c)(3) organization, non-profit organization founded in 1996 by Brewster Kahle that runs a digital library website, archive.org. It provides free access to collections of digitized media including websites, Application software, software applications, music, audiovisual, and print materials. The Archive also advocates a Information wants to be free, free and open Internet. Its mission is committing to provide "universal access to all knowledge". The Internet Archive allows the public to upload and download digital material to its data cluster, but the bulk of its data is collected automatically by its web crawlers, which work to preserve as much of the public web as possible. Its web archiving, web archive, the Wayback Machine, contains hundreds of billions of web captures. The Archive also oversees numerous Internet Archive#Book collections, book digitization projects, collectively one of the world's largest book digitization efforts. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1729
Events January–March * January 8 – Frederick, the eldest son of King George II of Great Britain is made Prince of Wales at the age of 21, a few months after he comes to Britain for the first time after growing up in Hanover. For 23 years, Frederick is heir apparent to the British throne, but dies of a lung injury in 1751. * January 19 – At the age of 14, Joseph (José), Prince of Brazil, son of King John V of Portugal, is married to the 10-year-old Princess Mariana Victoria of Spain, eldest daughter of King Philip V of Spain. In 1750, the couple become King Joseph I and Queen Consort Mariana Victoria of Spain. * February 14 – King Philip V of Spain issues a royal '' cedula'', directing an effort to offer incentives to families from the Canary Islands for settlements in New Spain north of the Rio Grande in the modern-day U.S. state of Texas (→ Canarian Americans). * February 24 (February 13 O.S.) – In the city of Resht in Persia, Russian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat's Last Theorem
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive number, positive integers , , and satisfy the equation for any integer value of greater than . The cases and have been known since antiquity to have infinitely many solutions.Singh, pp. 18–20 The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of ''Arithmetica''. Fermat added that he had a proof that was too large to fit in the margin. Although other statements claimed by Fermat without proof were subsequently proven by others and credited as theorems of Fermat (for example, Fermat's theorem on sums of two squares), Fermat's Last Theorem resisted proof, leading to doubt that Fermat ever had a correct proof. Consequently, the proposition became known as a conjecture rather than a theorem. After 358 years of effort by mathematicians, Wiles's proof of Fermat's Last Theorem, the first success ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Putney
Putney () is an affluent district in southwest London, England, in the London Borough of Wandsworth, southwest of Charing Cross. The area is identified in the London Plan as one of 35 major centres in Greater London. History Putney is an ancient parish which covered in the Hundred of Brixton in the county of Surrey. Its area has been reduced by the loss of Roehampton to the south-west, an offshoot hamlet that conserved more of its own clustered historic core. In 1855 the parish was included in the area of responsibility of the Metropolitan Board of Works and was grouped into the Wandsworth District. In 1889 the area was removed from Surrey and became part of the County of London. The Wandsworth District became the Metropolitan Borough of Wandsworth in 1900. Since 1965 Putney has formed part of the London Borough of Wandsworth in Greater London. The benefice of the parish remains a perpetual curacy whose patron is the Dean and Chapter of Worcester Cathedral. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cube (algebra)
In arithmetic and algebra, the cube of a number is its third exponentiation, power, that is, the result of multiplying three instances of together. The cube of a number is denoted , using a superscript 3, for example . The cube Mathematical operation, operation can also be defined for any other expression (mathematics), mathematical expression, for example . The cube is also the number multiplied by its square (algebra), square: :. The ''cube function'' is the function (mathematics), function (often denoted ) that maps a number to its cube. It is an odd function, as :. The volume of a Cube (geometry), geometric cube is the cube of its side length, giving rise to the name. The Inverse function, inverse operation that consists of finding a number whose cube is is called extracting the cube root of . It determines the side of the cube of a given volume. It is also raised to the one-third power. The graph of a function, graph of the cube function is known as the cubic para ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anecdote
An anecdote is "a story with a point", such as to communicate an abstract idea about a person, place, or thing through the concrete details of a short narrative or to characterize by delineating a specific quirk or trait. Anecdotes may be real or fictional; the anecdotal digression is a common feature of literary works and even oral anecdotes typically involve subtle exaggeration and dramatic shape designed to entertain the listener. An anecdote is always presented as the recounting of a real incident involving actual people and usually in an identifiable place. In the words of Jürgen Hein, they exhibit "a special realism" and "a claimed historical dimension". Etymology and usage The word ''anecdote'' (in Greek: ἀνέκδοτον "unpublished", literally "not given out") comes from Procopius of Caesarea, the biographer of Emperor Justinian I (). Procopius produced a work entitled (''Anekdota'', variously translated as ''Unpublished Memoirs'' or as ''Secret History'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]