Rafael Bombelli
Rafael Bombelli (baptised on 20 January 1526; died 1572) was an Italian mathematician. Born in Bologna, he is the author of a treatise on algebra and is a central figure in the understanding of imaginary numbers. He was the one who finally managed to address the problem with imaginary numbers. In his 1572 book, ''L'Algebra'', Bombelli solved equations using the method of del Ferro/ Tartaglia. He introduced the rhetoric that preceded the representative symbols +''i'' and -''i'' and described how they both worked. Life Rafael Bombelli was baptised on 20 January 1526 in Bologna, Papal States. He was born to Antonio Mazzoli, a wool merchant, and Diamante Scudieri, a tailor's daughter. The Mazzoli family was once quite powerful in Bologna. When Pope Julius II came to power, in 1506, he exiled the ruling family, the Bentivoglios. The Bentivoglio family attempted to retake Bologna in 1508, but failed. Rafael's grandfather participated in the coup attempt, and was captured and exec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra By Rafael Bombelli
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of Expression (mathematics), expressions within those systems. It is a generalization of arithmetic that introduces Variable (mathematics), variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication. Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the statements are true. To do so, it uses different methods of transforming equations to isolate variables. Linear algebra is a closely related field that investigates linear equations and combinations of them called ''system of linear equations, systems of linear equations''. It provides methods to find the values that solve all equations in the system at the same time, and to study the set of these solutions. Abstract algeb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
David Eugene Smith
David Eugene Smith (January 21, 1860 – July 29, 1944) was an American mathematician, educator, and editor. Education and career David Eugene Smith is considered one of the founders of the field of mathematics education. Smith was born in Cortland, New York, to Abram P. Smith, attorney and surrogate judge, and Mary Elizabeth Bronson, who taught her young son Latin and Greek. He attended Syracuse University, graduating in 1881 (Ph. D., 1887; LL.D., 1905). He studied to be a lawyer concentrating in arts and humanities, but accepted an instructorship in mathematics at the Cortland Normal School in 1884 where he attended as a young man. While at the Cortland Normal School Smith became a member of the Young Men's Debating Club (today the Delphic Fraternity.) He became a professor at the Michigan State Normal College in 1891 (later Eastern Michigan University), the principal at the State Normal School in Brockport, New York (1898), and a professor of mathematics at Teachers Colle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Morris Kline
Morris Kline (May 1, 1908 – June 10, 1992) was a professor of mathematics, a writer on the history, philosophy, and teaching of mathematics, and also a popularizer of mathematical subjects. Education and career Kline was born to a Jewish family in Brooklyn and resided in Jamaica, Queens. After graduating from Boys High School in Brooklyn, he studied mathematics at New York University, earning a bachelor's degree in 1930, a master's degree in 1932, and a doctorate (Ph.D.) in 1936. He continued at NYU as an instructor until 1942. During World War II, Kline was posted to the Signal Corps (United States Army) stationed at Belmar, New Jersey. Designated as a physicist, he worked in the engineering lab where radar was developed. After the war, he continued investigating electromagnetism, and from 1946 to 1966, he was director of the division for electromagnetic research at the Courant Institute of Mathematical Sciences. Kline resumed his mathematical teaching at NYU, becoming ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedes
Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenistic Sicily, Sicily. Although few details of his life are known, based on his surviving work, he is considered one of the leading scientists in classical antiquity, and one of the greatest mathematicians of all time. Archimedes anticipated modern calculus and mathematical analysis, analysis by applying the concept of the Cavalieri's principle, infinitesimals and the method of exhaustion to derive and rigorously prove many geometry, geometrical theorem, theorems, including the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral. Archimedes' other math ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heron Of Alexandria
Hero of Alexandria (; , , also known as Heron of Alexandria ; probably 1st or 2nd century AD) was a Greek mathematician and engineer who was active in Alexandria in Egypt during the Roman era. He has been described as the greatest experimentalist of antiquity and a representative of the Hellenistic scientific tradition. Hero published a well-recognized description of a steam-powered device called an ''aeolipile'', also known as "Hero's engine". Among his most famous inventions was a windwheel, constituting the earliest instance of wind harnessing on land. In his work ''Mechanics'', he described pantographs. Some of his ideas were derived from the works of Ctesibius. In mathematics, he wrote a commentary on Euclid's ''Elements'' and a work on applied geometry known as the ''Metrica''. He is mostly remembered for Heron's formula; a way to calculate the area of a triangle using only the lengths of its sides. Much of Hero's original writings and designs have been lost, but ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convergent (continued Fraction)
A simple or regular continued fraction is a continued fraction with numerators all equal one, and denominators built from a sequence \ of integer numbers. The sequence can be finite or infinite, resulting in a finite (or terminated) continued fraction like :a_0 + \cfrac or an infinite continued fraction like :a_0 + \cfrac Typically, such a continued fraction is obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In the ''finite'' case, the iteration/recursion is stopped after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an ''infinite'' continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers a_i are called the coefficients or terms of the continued fraction. Simple co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pietro Cataldi
Pietro Antonio Cataldi (15 April 1548, Bologna – 11 February 1626, Bologna) was an Italian mathematician. A citizen of Bologna, he taught mathematics and astronomy and also worked on military problems. His work included the development of simple continued fractions and a method for their representation. He was one of many mathematicians who attempted to prove Euclid's fifth postulate. Cataldi discovered the sixth and seventh perfect numbers by 1588.Caldwell, Chris''The largest known prime by year'' His discovery of the 6th, that corresponding to p=17 in the formula Mp=2p-1, exploded a many-times repeated number-theoretical myth that the perfect numbers had units digits that invariably alternated between 6 and 8. (Until Cataldi, 19 authors going back to Nicomachus are reported to have made the claim, with a few more repeating this afterward, according to L.E.Dickson's '' History of the Theory of Numbers''). Cataldi's discovery of the 7th (for p=19) held the record for the lar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square Roots
In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4^2 = (-4)^2 = 16. Every nonnegative real number has a unique nonnegative square root, called the ''principal square root'' or simply ''the square root'' (with a definite article, see below), which is denoted by \sqrt, where the symbol "\sqrt" is called the '' radical sign'' or ''radix''. For example, to express the fact that the principal square root of 9 is 3, we write \sqrt = 3. The term (or number) whose square root is being considered is known as the ''radicand''. The radicand is the number or expression underneath the radical sign, in this case, 9. For non-negative , the principal square root can also be written in exponent notation, as x^. Every positive number has two square roots: \sqrt (which is positive) and -\sqrt (which is n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simple Continued Fractions
Simple or SIMPLE may refer to: *Simplicity, the state or quality of being simple Arts and entertainment * ''Simple'' (album), by Andy Yorke, 2008, and its title track * "Simple" (Florida Georgia Line song), 2018 * "Simple", a song by Johnny Mathis from the 1984 album ''A Special Part of Me'' * "Simple", a song by Collective Soul from the 1995 album ''Collective Soul'' * "Simple", a song by Katy Perry from the 2005 soundtrack to ''The Sisterhood of the Traveling Pants'' * "Simple", a song by Khalil from the 2017 album ''Prove It All'' * "Simple", a song by Kreesha Turner from the 2008 album ''Passion'' * "Simple", a song by Ty Dolla Sign from the 2017 album ''Beach House 3'' deluxe version * ''Simple'' (video game series), budget-priced console games Businesses and organisations * Simple (bank), an American direct bank * SIMPLE Group, a consulting conglomeration based in Gibraltar * Simple Shoes, an American footwear brand * Simple Skincare, a British brand of soap a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bombelli (crater)
Bombelli is a small lunar impact crater that is located in the highlands to the north of the Sinus Successus. It was named after Italian mathematician Raphael Bombelli. It was previously designated Apollonius T. The crater Apollonius is located to the east-southeast. Bombelli is a roughly circular crater with a slight outward protrusion to the south-southwest. There is a small interior floor at the midpoint of the sloping interior walls, which is roughly one fourth the diameter of the crater. External links LTO-62D2 Daly— L&PI topographic map In modern mapping, a topographic map or topographic sheet is a type of map characterized by large- scale detail and quantitative representation of relief features, usually using contour lines (connecting points of equal elevation), but histori ... References * * * * * * * * * * * Impact craters on the Moon {{Craters on the Moon: A–B ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Leibniz
Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to many other branches of mathematics, such as binary arithmetic and statistics. Leibniz has been called the "last universal genius" due to his vast expertise across fields, which became a rarity after his lifetime with the coming of the Industrial Revolution and the spread of specialized labor. He is a prominent figure in both the history of philosophy and the history of mathematics. He wrote works on philosophy, theology, ethics, politics, law, history, philology, games, music, and other studies. Leibniz also made major contributions to physics and technology, and anticipated notions that surfaced much later in probability theory, biology, medicine, geology, psychology, linguistics and computer science. Leibniz contributed to the field of libr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |