Radó–Kneser–Choquet Theorem
In mathematics, the Radó–Kneser–Choquet theorem, named after Tibor Radó, Hellmuth Kneser and Gustave Choquet, states that the Poisson integral of a homeomorphism of the unit circle is a harmonic diffeomorphism of the open unit disk. The result was stated as a problem by Radó and solved shortly afterwards by Kneser in 1926. Choquet, unaware of the work of Radó and Kneser, rediscovered the result with a different proof in 1945. Choquet also generalized the result to the Poisson integral of a homeomorphism from the unit circle to a simple Jordan curve bounding a convex region. Statement Let ''f'' be an orientation-preserving homeomorphism of the unit circle , ''z'', = 1 in C and define the Poisson integral of ''f'' by :\displaystyle for ''r'' < 1. Standard properties of the Poisson integral show that ''F''''f'' is a harmonic function
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tibor Radó
Tibor Radó (June 2, 1895 – December 29, 1965) was a Hungarian mathematician who moved to the United States after World War I. Biography Radó was born in Budapest and between 1913 and 1915 attended the Polytechnic Institute, studying civil engineering. In World War I, he became a First Lieutenant in the Hungarian Army and was captured on the Russian Front. He escaped from a Siberian prisoner camp and, traveling thousands of miles across Arctic wasteland, managed to return to Hungary. He received a doctorate from the Franz Joseph University in 1923. He taught briefly at the university and then became a research fellow in Germany for the Rockefeller Foundation. In 1929, he moved to the United States and lectured at Harvard University and the Rice Institute before obtaining a faculty position in the Department of Mathematics at Ohio State University in 1930. In 1935 he was granted American citizenship. In World War II he was a science consultant to the United Sta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hellmuth Kneser
Hellmuth Kneser (16 April 1898 – 23 August 1973) was a Baltic German mathematician, who made notable contributions to group theory and topology. His most famous result may be his theorem on the existence of a prime decomposition for 3-manifolds. His proof originated the concept of normal surface, a fundamental cornerstone of the theory of 3-manifolds. He was born in Dorpat, Russian Empire (now Tartu, Estonia) and died in Tübingen, Germany. He was the son of the mathematician Adolf Kneser and the father of the mathematician Martin Kneser. He assisted Wilhelm Süss in the founding of the Mathematical Research Institute of Oberwolfach and served as the director of the institute from 1958 to 1959. He was an editor of Mathematische Zeitschrift, Archiv der Mathematik and Aequationes Mathematicae. Kneser formulated the problem of non-integer iteration of functions and proved the existence of the entire Abel function of the exponential; on the base of this Abel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gustave Choquet
Gustave Choquet (; 1 March 1915 – 14 November 2006) was a French mathematician. Choquet was born in Solesmes, Nord. His contributions include work in functional analysis, potential theory, topology and measure theory. He is known for creating the Choquet theory, the Choquet integral and the theory of capacities. He did postgraduate work at the École Normale Supérieure Paris where his advisor was Arnaud Denjoy. He was Professor at the University of Paris (subsequently Paris VI) from 1940 to 1984 and was also Professor at the École Polytechnique from 1960 to 1969. His honours and awards included being a Member of the Académie des Sciences, and an Officier of the Légion d’Honneur. His students include Haïm Brezis, Gilles Godefroy, Nassif Ghoussoub, Michel L. Lapidus, and Michel Talagrand. He was married to mathematician and mathematical physicist Yvonne Choquet-Bruhat, with whom he had a son Daniel and a daughter Geneviève. He died in Lyon in 2006. Bibliograp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poisson Integral
In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson. Poisson kernels commonly find applications in control theory and two-dimensional problems in electrostatics. In practice, the definition of Poisson kernels are often extended to ''n''-dimensional problems. Two-dimensional Poisson kernels On the unit disc In the complex plane, the Poisson kernel for the unit disc is given by P_r(\theta) = \sum_^\infty r^e^ = \frac = \operatorname\left(\frac\right), \ \ \ 0 \le r < 1. This can be thought of in two ways: either as a function of ''r'' and ''θ'', or as a family of functions of ''θ'' indexed by ''r''. If is the open [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unit Circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane. In topology, it is often denoted as because it is a one-dimensional unit n-sphere, -sphere. If is a point on the unit circle's circumference, then and are the lengths of the legs of a right triangle whose hypotenuse has length 1. Thus, by the Pythagorean theorem, and satisfy the equation x^2 + y^2 = 1. Since for all , and since the reflection of any point on the unit circle about the - or -axis is also on the unit circle, the above equation holds for all points on the unit circle, not only those in the first quadrant. The interior of the unit circle is called the open unit disk, while the interior of the unit circle combined with the unit circle itself is called the closed unit disk. One may also use other notions of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Harmonic Function
In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f: U \to \mathbb R, where is an open subset of that satisfies Laplace's equation, that is, : \frac + \frac + \cdots + \frac = 0 everywhere on . This is usually written as : \nabla^2 f = 0 or :\Delta f = 0 Etymology of the term "harmonic" The descriptor "harmonic" in the name harmonic function originates from a point on a taut string which is undergoing harmonic motion. The solution to the differential equation for this type of motion can be written in terms of sines and cosines, functions which are thus referred to as ''harmonics''. Fourier analysis involves expanding functions on the unit circle in terms of a series of these harmonics. Considering higher dimensional analogues of the harmonics on the unit ''n''-sphere, one arrives at the spherical harmonics. These functions satisfy Laplace's equation and over time "harm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unit Disk
In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1: :D_1(P) = \.\, The closed unit disk around ''P'' is the set of points whose distance from ''P'' is less than or equal to one: :\bar D_1(P)=\.\, Unit disks are special cases of disks and unit balls; as such, they contain the interior of the unit circle and, in the case of the closed unit disk, the unit circle itself. Without further specifications, the term ''unit disk'' is used for the open unit disk about the origin, D_1(0), with respect to the standard Euclidean metric. It is the interior of a circle of radius 1, centered at the origin. This set can be identified with the set of all complex numbers of absolute value less than one. When viewed as a subset of the complex plane (C), the unit disk is often denoted \mathbb. The open unit disk, the plane, and the upper half-plane The function :f(z)=\frac is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simply Connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the space) into any other such path while preserving the two endpoints in question. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial. Definition and equivalent formulations A topological space X is called if it is path-connected and any loop in X defined by f : S^1 \to X can be contracted to a point: there exists a continuous map F : D^2 \to X such that F restricted to S^1 is f. Here, S^1 and D^2 denotes the unit circle and closed unit disk in the Euclidean plane respectively. An equivalent formulation is this: X is simply connected if and only if it is path-connected, and whe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |