HOME





Proportional-fair Rule
In operations research and social choice, the proportional-fair (PF) rule is a rule saying that, among all possible alternatives, one should pick an alternative that cannot be improved, where "improvement" is measured by the sum of relative improvements possible for each individual agent. It aims to provide a compromise between the utilitarian rule - which emphasizes overall system efficiency, and the egalitarian rule - which emphasizes individual fairness. The rule was first presented in the context of rate control in communication networks. However, it is a general social choice rule and can also be used, for example, in resource allocation. Definition Let X be a set of possible `states of the world' or `alternatives'. Society wishes to choose a single state from X. For example, in a single-winner election, X may represent the set of candidates; in a resource allocation setting, X may represent all possible allocations of the resource. Let I be a finite set, representing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Operations Research
Operations research () (U.S. Air Force Specialty Code: Operations Analysis), often shortened to the initialism OR, is a branch of applied mathematics that deals with the development and application of analytical methods to improve management and decision-making. Although the term management science is sometimes used similarly, the two fields differ in their scope and emphasis. Employing techniques from other mathematical sciences, such as mathematical model, modeling, statistics, and mathematical optimization, optimization, operations research arrives at optimal or near-optimal solutions to decision-making problems. Because of its emphasis on practical applications, operations research has overlapped with many other disciplines, notably industrial engineering. Operations research is often concerned with determining the extreme values of some real-world objective: the Maxima and minima, maximum (of profit, performance, or yield) or minimum (of loss, risk, or cost). Originating in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Social Choice Theory
Social choice theory is a branch of welfare economics that extends the Decision theory, theory of rational choice to collective decision-making. Social choice studies the behavior of different mathematical procedures (social welfare function, social welfare functions) used to combine individual preferences into a coherent whole.Amartya Sen (2008). "Social Choice". ''The New Palgrave Dictionary of Economics'', 2nd EditionAbstract & TOC./ref> It contrasts with political science in that it is a Normative economics, normative field that studies how a society can make good decisions, whereas political science is a Positive economics, descriptive field that observes how societies actually do make decisions. While social choice began as a branch of economics and decision theory, it has since received substantial contributions from mathematics, philosophy, political science, and game theory. Real-world examples of social choice rules include constitution, constitutions and Parliamentary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Utilitarian Rule
In social choice theory, social choice and operations research, the utilitarian rule (also called the max-sum rule) is a Social welfare function, rule saying that, among all possible alternatives, society should pick the alternative which maximizes the ''sum of the utilities'' of all individuals in society. It is a formal mathematical representation of the Utilitarianism, utilitarian philosophy, and is often justified by reference to Harsanyi's utilitarian theorem or the Von Neumann–Morgenstern utility theorem, Von Neumann–Morgenstern theorem. Definition Let X be a set of possible "states of the world" or "alternatives". Society wishes to choose a single state from X. For example, in a single-winner election, X may represent the set of candidates; in a resource allocation setting, X may represent all possible allocations of the resource. Let I be a finite set, representing a collection of individuals. For each i \in I, let u_i:X\longrightarrow\mathbb be a ''utility, utilit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Egalitarian Rule
In social choice and operations research, the egalitarian rule (also called the max-min rule or the Rawlsian rule) is a rule saying that, among all possible alternatives, society should pick the alternative which maximizes the ''minimum utility'' of all individuals in society. It is a formal mathematical representation of the egalitarian philosophy. It also corresponds to John Rawls' principle of maximizing the welfare of the worst-off individual. Definition Let X be a set of possible `states of the world' or `alternatives'. Society wishes to choose a single state from X. For example, in a single-winner election, X may represent the set of candidates; in a resource allocation setting, X may represent all possible allocations. Let I be a finite set, representing a collection of individuals. For each i \in I, let u_i:X\longrightarrow\mathbb be a ''utility function'', describing the amount of happiness an individual ''i'' derives from each possible state. A '' social choice rule ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Single-winner Election
A single-member district or constituency is an electoral district represented by a single officeholder. It contrasts with a multi-member district, which is represented by multiple officeholders. In some countries, such as Australia and India, members of the lower house of parliament are elected from single-member districts, while members of the upper house are elected from multi-member districts. In some other countries, such as Singapore, members of parliament can be elected from either single-member or multi-member districts. History in the United States The United States Constitution, ratified in 1789, states: "The House of Representatives shall be composed of Members chosen every second Year by the People of the several States...Representatives...shall be apportioned among the several States which may be included within this Union, according to their respective Numbers." In other words, the Constitution specifies that each state will be apportioned a number of representat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Resource Allocation
In economics, resource allocation is the assignment of available resources to various uses. In the context of an entire economy, resources can be allocated by various means, such as markets, or planning. In project management, resource allocation or resource management is the scheduling of activities and the resources required by those activities while taking into consideration both the resource availability and the project time. Economics In economics, the field of public finance deals with three broad areas: macroeconomic stabilization, the distribution of income and wealth, and the allocation of resources. Much of the study of the allocation of resources is devoted to finding the conditions under which particular mechanisms of resource allocation lead to Pareto efficient outcomes, in which no party's situation can be improved without hurting that of another party. Strategic planning In strategic planning, resource allocation is a plan for using available resources, fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Utility
In economics, utility is a measure of a certain person's satisfaction from a certain state of the world. Over time, the term has been used with at least two meanings. * In a normative context, utility refers to a goal or objective that we wish to maximize, i.e., an objective function. This kind of utility bears a closer resemblance to the original utilitarian concept, developed by moral philosophers such as Jeremy Bentham and John Stuart Mill. * In a descriptive context, the term refers to an ''apparent'' objective function; such a function is revealed by a person's behavior, and specifically by their preferences over lotteries, which can be any quantified choice. The relationship between these two kinds of utility functions has been a source of controversy among both economists and ethicists, with most maintaining that the two are distinct but generally related. Utility function Consider a set of alternatives among which a person has a preference ordering. A utility fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Social Choice Theory
Social choice theory is a branch of welfare economics that extends the Decision theory, theory of rational choice to collective decision-making. Social choice studies the behavior of different mathematical procedures (social welfare function, social welfare functions) used to combine individual preferences into a coherent whole.Amartya Sen (2008). "Social Choice". ''The New Palgrave Dictionary of Economics'', 2nd EditionAbstract & TOC./ref> It contrasts with political science in that it is a Normative economics, normative field that studies how a society can make good decisions, whereas political science is a Positive economics, descriptive field that observes how societies actually do make decisions. While social choice began as a branch of economics and decision theory, it has since received substantial contributions from mathematics, philosophy, political science, and game theory. Real-world examples of social choice rules include constitution, constitutions and Parliamentary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proportional-fair Scheduling
Proportional-fair scheduling is a compromise-based scheduling algorithm. It is based upon maintaining a balance between two competing interests: Trying to maximize the total throughput of the network (wired or not) while at the same time allowing all users at least a minimal level of service. This is done by assigning each data flow a data rate or a scheduling priority (depending on the implementation) that is inversely proportional to its anticipated resource consumption. Guowang Miao, Jens Zander, Ki Won Sung, and Ben Slimane, Fundamentals of Mobile Data Networks, Cambridge University Press, , 2016. Weighted fair queuing Proportionally fair scheduling can be achieved by means of weighted fair queuing (WFQ), by setting the scheduling weights for data flow i to w_i = 1 / c_i, where the cost c_i is the amount of consumed resources per data bit. For instance: * In CDMA spread spectrum cellular networks, the cost may be the required energy per bit in the transmit power control (the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fair Subset Sum Problem
The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem. The input to the problem is a multiset S of ''n'' integers and a positive integer ''m'' representing the number of subsets. The goal is to construct, from the input integers, some ''m'' subsets. The problem has several variants: * ''Max-sum MSSP'': for each subset ''j'' in 1,...,''m'', there is a capacity ''Cj''. The goal is to make the ''sum'' of all subsets as large as possible, such that the sum in each subset j is at most ''Cj''. * ''Max-min MSSP'' (also called ''bottleneck MSSP'' or ''BMSSP''): again each subset has a capacity, but now the goal is to make the ''smallest'' subset sum as large as possible. * ''Fair SSP'': the subsets have no fixed capacities, but each subset belongs to a different person. The utility of each person is the sum of items in his/her subsets. The goal is to construct subsets that satisfy a given crit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Optimization
Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries. In the more general approach, an optimization problem consists of maxima and minima, maximizing or minimizing a Function of a real variable, real function by systematically choosing Argument of a function, input values from within an allowed set and computing the Value (mathematics), value of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of applied mathematics. Optimization problems Opti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]