Presymplectic Form
   HOME





Presymplectic Form
In geometric mechanics a presymplectic form is a closed differential 2-form of constant rank on a manifold. However, some authors use different definitions. Recently, Hajduk and Walczak defined a presymplectic form as a closed differential 2-form of maximal rank on a manifold of odd dimension. A symplectic form is a presymplectic form that is also nondegenerate. Lack of nondegeneracy, leading to presymplectic forms, occurs in dynamical systems with singular Lagrangians, Hamiltonian systems with constraints and control theory Control theory is a field of control engineering and applied mathematics that deals with the control system, control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the applic .... References Dynamical systems Differential geometry {{differential-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Closed And Exact Differential Forms
In mathematics, especially vector calculus and differential topology, a closed form is a differential form ''α'' whose exterior derivative is zero (); and an exact form is a differential form, ''α'', that is the exterior derivative of another differential form ''β'', i.e. . Thus, an ''exact'' form is in the ''image (mathematics), image'' of ''d'', and a ''closed'' form is in the ''kernel (algebra), kernel'' of ''d'' (also known as null space). For an exact form ''α'', for some differential form ''β'' of degree one less than that of ''α''. The form ''β'' is called a "potential form" or "primitive" for ''α''. Since the exterior derivative of a closed form is zero, ''β'' is not unique, but can be modified by the addition of any closed form of degree one less than that of ''α''. Because , every exact form is necessarily closed. The question of whether ''every'' closed form is exact depends on the topology of the domain of interest. On a Contractible space, contractible do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression f(x) \, dx is an example of a -form, and can be integrated over an interval ,b/math> contained in the domain of f: \int_a^b f(x)\,dx. Similarly, the expression f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz is a -form that can be integrated over a surface S: \int_S \left(f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz\right). The symbol \wedge denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form f(x,y,z) \, dx \wedge dy \wedge dz represents a volume element that can be integrated over a region of space. In general, a -form is an object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manifold (mathematics)
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not self-crossing curves such as a figure 8. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symplectic Form
In mathematics, a symplectic vector space is a vector space V over a field F (for example the real numbers \mathbb) equipped with a symplectic bilinear form. A symplectic bilinear form is a mapping \omega : V \times V \to F that is ; Bilinear: Linear in each argument separately; ; Alternating: \omega(v, v) = 0 holds for all v \in V; and ; Non-degenerate: \omega(v, u) = 0 for all v \in V implies that u = 0. If the underlying field has characteristic not 2, alternation is equivalent to skew-symmetry. If the characteristic is 2, the skew-symmetry is implied by, but does not imply alternation. In this case every symplectic form is a symmetric form, but not vice versa. Working in a fixed basis, \omega can be represented by a matrix. The conditions above are equivalent to this matrix being skew-symmetric, nonsingular, and hollow (all diagonal entries are zero). This should not be confused with a symplectic matrix, which represents a symplectic transformation of the space. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Degenerate Form
In mathematics, specifically linear algebra, a degenerate bilinear form on a vector space ''V'' is a bilinear form such that the map from ''V'' to ''V''∗ (the dual space of ''V'') given by is not an isomorphism. An equivalent definition when ''V'' is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero ''x'' in ''V'' such that :f(x,y)=0\, for all \,y \in V. Nondegenerate forms A nondegenerate or nonsingular form is a bilinear form that is not degenerate, meaning that v \mapsto (x \mapsto f(x,v)) is an isomorphism, or equivalently in finite dimensions, if and only if :f(x,y)=0 for all y \in V implies that x = 0. Using the determinant If ''V'' is finite-dimensional then, relative to some basis for ''V'', a bilinear form is degenerate if and only if the determinant of the associated matrix is zero – if and only if the matrix is ''singular'', and accordingly degenerate forms are also called singular forms. Likewise, a nondegenerate form is one for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lagrangian Mechanics
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the d'Alembert principle of virtual work. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, ''Mécanique analytique''. Lagrangian mechanics describes a mechanical system as a pair consisting of a configuration space (physics), configuration space ''M'' and a smooth function L within that space called a ''Lagrangian''. For many systems, , where ''T'' and ''V'' are the Kinetic energy, kinetic and Potential energy, potential energy of the system, respectively. The stationary action principle requires that the Action (physics)#Action (functional), action functional of the system derived from ''L'' must remain at a stationary point (specifically, a Maximum and minimum, maximum, Maximum and minimum, minimum, or Saddle point, saddle point) throughout the time evoluti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamiltonian System
A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory. Overview Informally, a Hamiltonian system is a mathematical formalism developed by William Rowan Hamilton, Hamilton to describe the evolution equation, evolution equations of a physical system. The advantage of this description is that it gives important insights into the dynamics, even if the initial value problem cannot be solved analytically. One example is the Three-body problem, planetary movement of three bodies: while there is no closed-form solution to the general problem, Henri Poincaré, Poincaré showed for the first time that it exhibits deterministic chaos. Formally, a Hamiltonian system is a dynamical system characterised by the scalar function H(\bol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




First Class Constraint
In physics, a first-class constraint is a dynamical quantity in a constrained Hamiltonian system whose Poisson bracket with all the other constraints vanishes on the constraint surface in phase space (the surface implicitly defined by the simultaneous vanishing of all the constraints). To calculate the first-class constraint, one assumes that there are no second-class constraints, or that they have been calculated previously, and their Dirac brackets generated. First- and second-class constraints were introduced by as a way of quantizing mechanical systems such as gauge theories where the symplectic form is degenerate. The terminology of first- and second-class constraints is confusingly similar to that of primary and secondary constraints, reflecting the manner in which these are generated. These divisions are independent: both first- and second-class constraints can be either primary or secondary, so this gives altogether four different classes of constraints. Poisson bracke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Control Theory
Control theory is a field of control engineering and applied mathematics that deals with the control system, control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any ''delay'', ''overshoot'', or ''steady-state error'' and ensuring a level of control Stability theory, stability; often with the aim to achieve a degree of Optimal control, optimality. To do this, a controller with the requisite corrective behavior is required. This controller monitors the controlled process variable (PV), and compares it with the reference or Setpoint (control system), set point (SP). The difference between actual and desired value of the process variable, called the ''error'' signal, or SP-PV error, is applied as feedback to generate a control action to bring the controlled process variable to the same value as the set point. Other aspects ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamical Systems
In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, fluid dynamics, the flow of water in a pipe, the Brownian motion, random motion of particles in the air, and population dynamics, the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real number, real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a Set (mathematics), set, without the need of a Differentiability, smooth space-time structure defined on it. At any given time, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]